scholarly journals Glucosinolate and phenylpropanoid biosynthesis are linked by proteasome-dependent degradation of PAL

2019 ◽  
Author(s):  
Jeongim Kim ◽  
Xuebin Zhang ◽  
Pete Pascuzzi ◽  
Chang-Jun Liu ◽  
Clint Chapple

Plants produce several hundreds of thousands of secondary metabolites that are important for adaptation to various environmental conditions. Although different groups of secondary metabolites are synthesized through unique biosynthetic pathways, plants must orchestrate their production simultaneously. Phenylpropanoids and glucosinolates are two classes of secondary metabolites that are synthesized through apparently independent biosynthetic pathways. Genetic evidence has revealed that the accumulation of glucosinolate intermediates limits phenylpropanoid production in a Mediator Subunit 5 (MED5) dependent manner. To elucidate the molecular mechanism underlying this process, we analyzed the transcriptomes of a suite of glucosinolate-deficient mutants using RNAseq and identified mis-regulated genes that are rescued by the disruption of MED5. The expression of a group of Kelch Domain F-Box genes (KFBs) that function in PAL degradation is affected in glucosinolate biosynthesis mutants and the disruption of these KFBs restores phenylpropanoid deficiency, dwarfism and sterility in the mutants. Our study suggests that glucosinolate/phenylpropanoid metabolic crosstalk involves the transcriptional regulation of KFB genes that initiate the degradation of the enzyme phenylalanine ammonia-lyase, which catalyzes the first step of the phenylpropanoid biosynthesis pathway. Nevertheless, KFB mutant plants remain partially sensitive to glucosinolate pathway mutations, suggesting that other mechanisms that link the two pathways also exist.

2008 ◽  
Vol 3 (8) ◽  
pp. 1934578X0800300
Author(s):  
Gastón Stockman ◽  
Ricardo Boland

The plant kingdom represents a valuable source of natural products of commercial interest. These compounds, named secondary metabolites, are not essential for the survival of plants, but confer them some advantages that allow adaptation to changes in their environment. Nevertheless, yields of secondary metabolites are low for commercial purposes, so it has become important to design strategies for increasing their production. Plants manage to adapt to physical changes in their environment, defending themselves against pathogen attack or herbivore wounding. Such aggressive stimuli, also known as elicitors, initiate signaling metabolic cascades that induce accumulation of certain secondary metabolites. Progress has been recently achieved in the understanding of signaling events originating from elicitation and related transcriptional regulation. These advances will allow maneuvering expression of key enzymes implicated in biosynthetic pathways of secondary metabolites, thereby enhancing their accumulation.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1607
Author(s):  
Xinyu Chen ◽  
Qiong Mei ◽  
Weifang Liang ◽  
Jia Sun ◽  
Xuming Wang ◽  
...  

Programmed cell death (PCD) is involved in plant growth and development and in resistance to biotic and abiotic stress. To understand the molecular mechanism that triggers PCD, phenotypic and physiological analysis was conducted using the first three leaves of mutant rice PCD-induced-resistance 1(pir1) and its wild-type ZJ22. The 2nd and 3rd leaves of pir1 had a lesion mimic phenotype, which was shown to be an expression of PCD induced by H2O2-accumulation. The PIR1 gene was mapped in a 498 kb-interval between the molecular markers RM3321 and RM3616 on chromosome 5, and further analysis suggested that the PCD phenotype of pir1 is controlled by a novel gene for rice PCD. By comparing the mutant with wild type rice, 1679, 6019, and 4500 differentially expressed genes (DEGs) were identified in the three leaf positions, respectively. KEGG analysis revealed that DEGs were most highly enriched in phenylpropanoid biosynthesis, alpha-linolenic acid metabolism, and brassinosteroid biosynthesis. In addition, conjoint analysis of transcriptome data by weighted gene co-expression network analysis (WGCNA) showed that the turquoise module of the 18 identified modules may be related to PCD. There are close interactions or indirect cross-regulations between the differential genes that are significantly enriched in the phenylpropanoid biosynthesis pathway and the hormone biosynthesis pathway in this module, which indicates that these genes may respond to and trigger PCD.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 957
Author(s):  
Mamona Nazir ◽  
Muhammad Saleem ◽  
Muhammad Imran Tousif ◽  
Muhammad Aijaz Anwar ◽  
Frank Surup ◽  
...  

Meroterpenoids are secondary metabolites formed due to mixed biosynthetic pathways which are produced in part from a terpenoid co-substrate. These mixed biosynthetically hybrid compounds are widely produced by bacteria, algae, plants, and animals. Notably amazing chemical diversity is generated among meroterpenoids via a combination of terpenoid scaffolds with polyketides, alkaloids, phenols, and amino acids. This review deals with the isolation, chemical diversity, and biological effects of 452 new meroterpenoids reported from natural sources from January 2016 to December 2020. Most of the meroterpenoids possess antimicrobial, cytotoxic, antioxidant, anti-inflammatory, antiviral, enzyme inhibitory, and immunosupressive effects.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guichun Wu ◽  
Yuqiang Zhang ◽  
Bo Wang ◽  
Kaihuai Li ◽  
Yuanlai Lou ◽  
...  

Abstract Background Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a devastating rice disease. The Xoo-rice interaction, wherein wide ranging host- and pathogen-derived proteins and genes wage molecular arms race, is a research hotspot. Hence, the identification of novel rice-induced Xoo virulence factors and characterization of their roles affecting rice global gene expression profiles will provide an integrated and better understanding of Xoo-rice interactions from the molecular perspective. Results Using comparative proteomics and an in vitro interaction system, we revealed that 5 protein spots from Xoo exhibited significantly different expression patterns (|fold change| > 1.5) at 3, 6, 12 h after susceptible rice leaf extract (RLX) treatment. MALDI-TOF MS analysis and pathogenicity tests showed that 4 host-induced proteins, including phosphohexose mutase, inositol monophosphatase, arginase and septum site-determining protein, affected Xoo virulence. Among them, mutants of two host-induced carbohydrate metabolism enzyme-encoding genes, ΔxanA and Δimp, elicited enhanced defense responses and nearly abolished Xoo virulence in rice. To decipher rice differentially expressed genes (DEGs) associated with xanA and imp, transcriptomic responses of ΔxanA-treated and Δimp-treated susceptible rice were compared to those in rice treated with PXO99A at 1 and 3 dpi. A total of 1521 and 227 DEGs were identified for PXO99A vs Δimp at 1 and 3 dpi, while for PXO99A vs ΔxanA, there were 131 and 106 DEGs, respectively. GO, KEGG and MapMan analyses revealed that the DEGs for PXO99A vs Δimp were mainly involved in photosynthesis, signal transduction, transcription, oxidation-reduction, hydrogen peroxide catabolism, ion transport, phenylpropanoid biosynthesis and metabolism of carbohydrates, lipids, amino acids, secondary metabolites, hormones, and nucleotides, while the DEGs from PXO99A vs ΔxanA were predominantly associated with photosynthesis, signal transduction, oxidation-reduction, phenylpropanoid biosynthesis, cytochrome P450 and metabolism of carbohydrates, lipids, amino acids, secondary metabolites and hormones. Although most pathways were associated with both the Δimp and ΔxanA treatments, the underlying genes were not the same. Conclusion Our study identified two novel host-induced virulence factors XanA and Imp in Xoo, and revealed their roles in global gene expression in susceptible rice. These results provide valuable insights into the molecular mechanisms of pathogen infection strategies and plant immunity.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1334
Author(s):  
Yuqing Huang ◽  
Shengguan Cai ◽  
Guoping Zhang ◽  
Songlin Ruan

Phosphite (PHI) has been used in the management of Phytophthora diseases since the 1970s.We assessed the effect of PHI on controlling the incidence of Xanthomonas oryzae pv.oryzae and Pyricularia grisea. As a result, PHI application significantly inhibited the incidence of the diseases. To clarify the molecular mechanism underlying this, a transcriptome study was employed. In total, 2064 differentially expressed genes (DEGs) were identified between control and PHI treatment. The key DEGs could be classified into phenylpropanoid biosynthesis (ko00940), starch and sucrose metabolism (ko00500), and plant hormone signal transduction (ko04075). The expressions of defense-related genes had a higher expression lever upon PHI treatment. This study provides new insights into the mechanism of protection effect of PHI against pathogens.


2010 ◽  
Vol 192 (18) ◽  
pp. 4752-4762 ◽  
Author(s):  
Christopher E. Wozniak ◽  
Fabienne F. V. Chevance ◽  
Kelly T. Hughes

ABSTRACT In Salmonella, there are three classes of promoters in the flagellar transcriptional hierarchy. This organization allows genes needed earlier in the construction of flagella to be transcribed before genes needed later. Four operons (fliAZY, flgMN, fliDST, and flgKL) are expressed from both class 2 and class 3 promoters. To investigate the purpose for expressing genes from multiple flagellar promoters, mutants were constructed for each operon that were defective in either class 2 transcription or class 3 transcription. The mutants were checked for defects in swimming through liquids, swarming over surfaces, and transcriptional regulation. The expression of the hook-associated proteins (FlgK, FlgL, and FliD) from class 3 promoters was found to be important for swarming motility. Both flgMN promoters were involved in coordinating class 3 transcription with the stage of assembly of the hook-basal body. Finally, the fliAZY class 3 promoter lowered class 3 transcription in stationary phase. These results indicate that the multiple flagellar promoters respond to specific environmental conditions and help coordinate transcription with flagellar assembly.


2019 ◽  
Vol 121 ◽  
pp. 586-592 ◽  
Author(s):  
Luis-Ángel Xoca-Orozco ◽  
Selene Aguilera-Aguirre ◽  
Julio Vega-Arreguín ◽  
Gustavo Acevedo-Hernández ◽  
Erik Tovar-Pérez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document