Potent inhibition of TCP transcription factors by miR319 ensures proper root growth in Arabidopsis

Author(s):  
Julia L. Baulies ◽  
Edgardo G. Bresso ◽  
Camila Goldy ◽  
Javier F. Palatnik ◽  
Carla Schommer
2020 ◽  
Vol 21 (11) ◽  
pp. 4080
Author(s):  
Yang Liu ◽  
Jiameng Xu ◽  
Siyi Guo ◽  
Xianzheng Yuan ◽  
Shan Zhao ◽  
...  

Aluminum (Al) stress is a major limiting factor for plant growth and crop production in acid soils. At present, only a few transcription factors involved in the regulation of Al resistance have been characterized. Here, we used reversed genetic approach through phenotype analysis of overexpressors and mutants to demonstrate that AtHB7 and AtHB12, two HD-Zip I transcription factors, participate in Al resistance. In response to Al stress, AtHB7 and AtHB12 displayed different dynamic expression patterns. Although both AtHB7 and AtHB12 positively regulate root growth in the absence of Al stress, our results showed that AtHB7 antagonizes with AtHB12 to control root growth in response to Al stress. The athb7/12 double mutant displayed a wild-type phenotype under Al stress. Consistently, our physiological analysis showed that AtHB7 and AtHB12 oppositely regulate the capacity of cell wall to bind Al. Yeast two hybrid assays showed that AtHB7 and AtHB12 could form homo-dimers and hetero-dimers in vitro, suggesting the interaction between AtHB7 and AtHB12 in the regulation of root growth. The conclusion was that AtHB7 and AtHB12 oppositely regulate Al resistance by affecting Al accumulation in root cell wall.


2021 ◽  
Vol 22 (17) ◽  
pp. 9275
Author(s):  
Nuo Shen ◽  
Sifan Hou ◽  
Guoqing Tu ◽  
Wenzhi Lan ◽  
Yanping Jing

The remodeling of root architecture is regarded as a major development to improve the plant’s adaptivity to phosphate (Pi)-deficient conditions. The WRKY transcription factors family has been reported to regulate the Pi-deficiency-induced systemic responses by affecting Pi absorption or transportation. Whether these transcription factors act as a regulator to mediate the Pi-deficiency-induced remodeling of root architecture, a typical local response, is still unclear. Here, we identified an Arabidopsis transcription factor, WRKY33, that acted as a negative regulator to mediate the Pi-deficiency-induced remodeling of root architecture. The disruption of WRKY33 in wrky33-2 mutant increased the plant’s low Pi sensitivity by further inhibiting the primary root growth and promoting the formation of root hair. Furthermore, we revealed that WRKY33 negatively regulated the remodeling of root architecture by controlling the transcriptional expression of ALMT1 under Pi-deficient conditions, which further mediated the Fe3+ accumulation in root tips to inhibit the root growth. In conclusion, this study demonstrates a previously unrecognized signaling crosstalk between WRKY33 and the ALMT1-mediated malate transport system to regulate the Pi deficiency responses.


2021 ◽  
Author(s):  
Daniele Rosado ◽  
Amanda Ackermann ◽  
Olya Spassibojko ◽  
Magdalena Rossi ◽  
Ullas V Pedmale

Shade-intolerant plants rapidly elongate their stems, branches, and leaf stalks to compete with their neighboring vegetation to maximize sunlight capture for photosynthesis. This rapid growth adaptation, known as the shade avoidance response (SAR), comes at a cost; reduced biomass, crop yield, and root growth. Significant progress has been made on the mechanistic understanding of hypocotyl elongation during SAR; however, the molecular account of how root growth is repressed is not well understood. Here, we explore the mechanisms by which low red:far-red induced SAR restrict the primary and lateral root (LR) growth. By analyzing whole-genome transcriptome, we identified a core set of shade-induced genes in the roots of Arabidopsis and tomato seedlings grown in the shade. Abiotic and biotic stressors also induce many of these shade-induced genes and are predominantly regulated by the WRKY transcription factors. Correspondingly, a majority of the WRKYs were also among the shade-induced genes. Functional analysis using transgenics of these shade-induced WRKYs revealed their role is essentially to restrict primary root and LR growth in the shade, and captivatingly, they did not affect hypocotyl elongation. Similarly, we also show that ethylene hormone signaling is necessary to limit root growth in the shade. Our study proposes that during SAR, shade-induced WRKY26, 45, and 75, and ethylene reprogram gene expression in the root to restrict its growth and development. The reduced growth of root organs helps the plant divert its critical resources to the elongating organs in the shoot to ensure competitiveness under limiting photosynthetic radiation


2020 ◽  
Author(s):  
Li Lin ◽  
Jan Van de Velde ◽  
Na Nguyen ◽  
Rick Meyer ◽  
Yong-qiang Charles An ◽  
...  

ABSTRACTSome crops inhibit shoot growth but maintain root growth under water-deficit conditions. Unraveling the molecular mechanisms of root plasticity under water deficit conditions in plants remains a major challenge. We developed an efficient platform for identifying core transcription factors (TFs) that collectively regulate each other and/or themselves in response to water stress, and exploring their interconnected regulatory circuitry involved in root growth maintenance under water deficit in soybean. We performed multi-species phylogenetic footprinting combined with spatial-temporal transcriptome analysis of soybean (Glycine max) roots under water deficit to identify conserved motifs that function in the water-stress response. Using these functional conserved cis-motifs, we applied a new approach to trace back motifs-associated core TFs ingroup as signal mediators, which mediate signaling between abiotic and endogenous stimuli. We integrated a co-functional TF–TF network and conserved motif-centered TF–DNA networks to construct a core TF network defined by mutual cross-regulation among core TFs. We found that core TF ARG (Abscisic acid response element binding factor-like Root Growth regulator) represses BRG (Brassinosteroid enhanced expression-like Root Growth regulator) expression through binding to its promoter at a conserved binding site. ARG and BRG antagonistically regulate Phytochrome-interacting factor-like Root Growth regulator (PRG) and combinatorially regulate some other core TFs. These core TFs form complex regulatory circuits to integrate light and multiple hormone signaling pathways and maintain root growth in response to varying degrees of water stress. Our study provides valuable information to unravel the complicated mechanisms of molecular networks involved in the regulation of root growth under water deficit.


Sign in / Sign up

Export Citation Format

Share Document