Brazing of ZrO2 Ceramics with Metallic Fillers Using Electrical Current

Author(s):  
O.V. Durov ◽  
T.V. Sydorenko ◽  
O. Yu. Koval
Keyword(s):  
1990 ◽  
Vol 29 (04) ◽  
pp. 282-288 ◽  
Author(s):  
A. van Oosterom

AbstractThis paper introduces some levels at which the computer has been incorporated in the research into the basis of electrocardiography. The emphasis lies on the modeling of the heart as an electrical current generator and of the properties of the body as a volume conductor, both playing a major role in the shaping of the electrocardiographic waveforms recorded at the body surface. It is claimed that the Forward-Problem of electrocardiography is no longer a problem. Several source models of cardiac electrical activity are considered, one of which can be directly interpreted in terms of the underlying electrophysiology (the depolarization sequence of the ventricles). The importance of using tailored rather than textbook geometry in inverse procedures is stressed.


2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.


2019 ◽  
Vol 14 (1) ◽  
pp. 75-83
Author(s):  
L. Bouafif ◽  
N. Ellouze

Background: Transcutaneous Electrical Nerve Stimulation (TENS) is a non-invasive pain therapy that uses the sensory effects of an electrical current applied to the skin. Some clinical studies demonstrated that this treatment helps to reduce acute and chronic pains, while others gave sometimes contradictory or uncertain conclusions about the performances of this strategy according to pathology classification. The purpose of this study is the development and evaluation of a new modulated version of transcutaneous electrical nerve stimulation called PWM-TENS. The principle is based on an automatic variation of the stimulation parameters (frequency, amplitude, duration, shape, cyclic ratio) according to the pain evolution. Methods: The study was a controlled clinical trial involving 15 participants, divided into 2 groups. The first experimental group performed modulated PWM-TENS electro-stimulation sessions applied to the painful areas 3 to 4 times a day, for one month. The second control group did parallel treatments by Placebo. The evaluation of the pain intensity is done with the Visual Analog Scale (EVA), the DN4 and SF36 questionnaires. Results: The tests and measurements with our embedded PWM-TENS technique demonstrated that we succeeded to increase the analgesic effect after stopping the stimulation and reduced the pain sensation by about 60%. An improvement in pain intensity scores and questionnaires (EVA, DN4), as well as the quality of life score (SF36), was observed. Also, a reduction of the treatment period from 3 to 1 month was also obtained. Conclusion: The first results clinically observed in the PWM-TENS technique are encouraging. The findings of this study confirm that this noninvasive strategy is suitable and useful for acute pains coming from the nociceptive, neuropathic and musculoskeletal origin. However, its efficiency is moderated and less adapted for low back pain. The experiments make it possible to estimate whether this modulated TENS method could improve existing anti-pain therapies, taking into account objective and subjective evaluation criteria. But this study must be followed by large population samples to answer all the problems of acute and chronic pains.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Won-Yong Jeon ◽  
Seyoung Mun ◽  
Wei Beng Ng ◽  
Keunsoo Kang ◽  
Kyudong Han ◽  
...  

Enzymatic biofuel cells (EBFCs) have excellent potential as components in bioelectronic devices, especially as active biointerfaces to regulate stem cell behavior for regenerative medicine applications. However, it remains unclear to what extent EBFC-generated electrical stimulation can regulate the functional behavior of human adipose-derived mesenchymal stem cells (hAD-MSCs) at the morphological and gene expression levels. Herein, we investigated the effect of EBFC-generated electrical stimulation on hAD-MSC cell morphology and gene expression using next-generation RNA sequencing. We tested three different electrical currents, 127 ± 9, 248 ± 15, and 598 ± 75 nA/cm2, in mesenchymal stem cells. We performed transcriptome profiling to analyze the impact of EBFC-derived electrical current on gene expression using next generation sequencing (NGS). We also observed changes in cytoskeleton arrangement and analyzed gene expression that depends on the electrical stimulation. The electrical stimulation of EBFC changes cell morphology through cytoskeleton re-arrangement. In particular, the results of whole transcriptome NGS showed that specific gene clusters were up- or down-regulated depending on the magnitude of applied electrical current of EBFC. In conclusion, this study demonstrates that EBFC-generated electrical stimulation can influence the morphological and gene expression properties of stem cells; such capabilities can be useful for regenerative medicine applications such as bioelectronic devices.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Juan M. Cornejo ◽  
Agar K. Quintana ◽  
Nohra E. Beltran ◽  
Pilar Granados

Abstract Background An electrical potential not previously reported—electrical cochlear response (ECR)—observed only in implanted patients is described. Its amplitude and growth slope are a measurement of the stimulation achieved by a tone pip on the auditory nerve. The stimulation and recording system constructed for this purpose, the features of this potential obtained in a group of 43 children, and its possible clinical use are described. The ECR is obtained by averaging the EEG epochs acquired each time the cochlear implant (CI) processes a tone pip of known frequency and intensity when the patient is sleeping and using the CI in everyday mode. The ECR is sensitive to tone pip intensity level, microphone sensitivity, sound processor gain, dynamic range of electrical current, and responsiveness to electrical current of the auditory nerve portion involved with the electrode under test. It allows individual evaluation of intracochlear electrodes by choosing, one at the time, the central frequency of the electrode as the test tone pip frequency, so the ECR measurement due to a variable intensity tone pip allows to establish the suitability of the dynamic range of the electrode current. Results There is a difference in ECR measurements when patients are grouped based on their auditory behavior. The ECR slope and amplitude for the Sensitive group is 0.2 μV/dBHL and 10 μV at 50 dBHL compared with 0.04 μV/dBHL and 3 μV at 50dBHL for the Inconsistent group. The clinical cases show that adjusting the dynamic range of current based on the ECR improved the patient’s auditory behavior. Conclusions ECR can be recorded regardless of the artifact due to the electromyographic activity of the patient and the functioning of the CI. Its amplitude and growth slope versus the intensity of the stimulus differs between electrodes. The relationship between minimum ECR detection intensity level and auditory threshold suggests the possibility of estimating patient auditory thresholds this way. ECR does not depend on the subject’s age, cooperation, or health status. It can be obtained at any time after implant surgery and the test procedure is the same regardless of device manufacturer.


Sign in / Sign up

Export Citation Format

Share Document