Analysis of the Hemispheric Sunspot Number Time Series for the Solar Cycles 18 to 24

Solar Physics ◽  
2019 ◽  
Vol 294 (10) ◽  
Author(s):  
P. Chowdhury ◽  
A. Kilcik ◽  
V. Yurchyshyn ◽  
V. N. Obridko ◽  
J. P. Rozelot
2016 ◽  
Vol 2 (3) ◽  
pp. 59-68 ◽  
Author(s):  
Тамара Гуляева ◽  
Tamara Gulyaeva

The International Reference Ionosphere (IRI) imports global effective ionospheric IG12 index based on ionosonde measurements of the critical frequency foF2 as a proxy of solar activity. Similarly, the global electron content (GEC), smoothed by the sliding 12-months window (GEC12), is used as a solar proxy in the ionospheric and plasmaspheric model IRI-Plas. GEC has been calculated from global ionospheric maps of total electron content (TEC) since 1998 whereas its productions for the preceding years and predictions for the future are made with the empirical model of the linear dependence of GEC on solar activity. At present there is a need to re-evaluate solar and ionospheric indices in the ionospheric models due to the recent revision of sunspot number (SSN2) time series, which has been conducted since 1st July, 2015 [Clette et al., 2014]. Implementation of SSN2 instead of the former SSN1 series with the ionospheric model could increase model prediction errors. A formula is proposed to transform the smoothed SSN212 series to the proxy of the former basic SSN112=R12 index, which is used by IRI and IRI-Plas models for long-term ionospheric predictions. Regression relationships are established between GEC12, the sunspot number R12, and the proxy solar index of 10.7 cm microwave radio flux, F10.712. Comparison of calculations by the IRI-Plas and IRI models with observations and predictions for Moscow during solar cycles 23 and 24 has shown the advantage of implementation of GEC12 index with the IRI-Plas model.


2016 ◽  
Vol 2 (3) ◽  
pp. 87-98 ◽  
Author(s):  
Тамара Гуляева ◽  
Tamara Gulyaeva

The International Reference Ionosphere (IRI) imports global effective ionospheric IG12 index based on ionosonde measurements of the critical frequency foF2 as a proxy of solar activity. Similarly, the global electron content (GEC), smoothed by the sliding 12-months window (GEC12), is used as a solar proxy in the ionospheric and plasmaspheric model IRI-Plas. GEC has been calculated from global ionospheric maps of total electron content (TEC) since 1998 whereas its productions for the preceding years and predictions for the future are made with the empirical model of the linear dependence of GEC on solar activity. At present there is a need to re-evaluate solar and ionospheric indices in the ionospheric models due to the recent revision of sunspot number (SSN2) time series, which has been conducted since July 1, 2015 [Clette et al., 2014]. Implementation of SSN2 instead of the former SSN1 series with the ionospheric model could increase model prediction errors. A formula is proposed to transform the smoothed SSN212 series to the proxy of the former basic SSN112=R12 index, which is used by the IRI and IRI-Plas models for long-term ionospheric predictions. Regression relationships are established between GEC12, the sunspot number R12, and the proxy solar index of 10.7 cm microwave radio flux, F10.712. Comparison of calculations by the IRI-Plas and IRI models with observations and predictions for Moscow during solar cycles 23 and 24 has shown the advantage of implementation of GEC12 index with the IRI-Plas model.


1994 ◽  
Vol 144 ◽  
pp. 279-282
Author(s):  
A. Antalová

AbstractThe occurrence of LDE-type flares in the last three cycles has been investigated. The Fourier analysis spectrum was calculated for the time series of the LDE-type flare occurrence during the 20-th, the 21-st and the rising part of the 22-nd cycle. LDE-type flares (Long Duration Events in SXR) are associated with the interplanetary protons (SEP and STIP as well), energized coronal archs and radio type IV emission. Generally, in all the cycles considered, LDE-type flares mainly originated during a 6-year interval of the respective cycle (2 years before and 4 years after the sunspot cycle maximum). The following significant periodicities were found:• in the 20-th cycle: 1.4, 2.1, 2.9, 4.0, 10.7 and 54.2 of month,• in the 21-st cycle: 1.2, 1.6, 2.8, 4.9, 7.8 and 44.5 of month,• in the 22-nd cycle, till March 1992: 1.4, 1.8, 2.4, 7.2, 8.7, 11.8 and 29.1 of month,• in all interval (1969-1992):a)the longer periodicities: 232.1, 121.1 (the dominant at 10.1 of year), 80.7, 61.9 and 25.6 of month,b)the shorter periodicities: 4.7, 5.0, 6.8, 7.9, 9.1, 15.8 and 20.4 of month.Fourier analysis of the LDE-type flare index (FI) yields significant peaks at 2.3 - 2.9 months and 4.2 - 4.9 months. These short periodicities correspond remarkably in the all three last solar cycles. The larger periodicities are different in respective cycles.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Rainer Arlt ◽  
José M. Vaquero

AbstractSunspot observations are available in fairly good numbers since 1610, after the invention of the telescope. This review is concerned with those sunspot observations of which longer records and drawings in particular are available. Those records bear information beyond the classical sunspot numbers or group sunspot numbers. We begin with a brief summary on naked-eye sunspot observations, in particular those with drawings. They are followed by the records of drawings from 1610 to about 1900. The review is not a compilation of all known historical sunspot information. Some records contributing substantially to the sunspot number time series may therefore be absent. We also glance at the evolution of the understanding of what sunspots actually are, from 1610 to the 19th century. The final part of the review illuminates the physical quantities that can be derived from historical drawings.


2021 ◽  
Author(s):  
Benjamin L Alterman ◽  
Justin C Kasper ◽  
Robert J Leamon ◽  
Scott W McIntosh

Abstract We study the solar wind helium-to-hydrogen abundance's ( A He ) relationship to solar cycle onset. Using OMNI/Lo data, we show that A He increases prior to sunspot number (SSN) minima. We also identify a rapid depletion and recovery in A He that occurs directly prior to cycle onset. This A He Shutoff happens at approximately the same time across solar wind speeds ( v sw ) and the time between successive A He shutoffs is typically on the order of the corresponding solar cycle length. In contrast to A He 's v sw -dependent phase lag with respect to SSN (Alterman and Kasper, 2019), A He Shutoff's concurrence across v sw likely implies it is independent of solar wind acceleration and driven by a mechanism near or below the photosphere. Using Brightpoint (BP) measurements to provide context, we infer that this shutoff is likely related to the overlap of adjacent solar cycles and the equatorial flux cancelation of the older, extended solar cycle during solar minima.


2021 ◽  
Vol 44 ◽  
pp. 100-106
Author(s):  
A.K. Singh ◽  
◽  
A. Bhargawa ◽  

Solar-terrestrial environment is manifested primarily by the physical conditions of solar interior, solar atmosphere and eruptive solar plasma. Each parameter gives unique information about the Sun and its activity according to its defined characteristics. Hence the variability of solar parameters is of interest from the point of view of plasma dynamics on the Sun and in the interplanetary space as well as for the solar-terrestrial physics. In this study, we have analysed various solar transients and parameters to establish the recent trends of solar activity during solar cycles 21, 22, 23 and 24. The correlation coefficients of linear regression of F10.7 cm index, Lyman alpha index, Mg II index, cosmic ray intensity, number of M & X class flares and coronal mass ejections (CMEs) occurrence rate versus sunspot number was examined for last four solar cycles. A running cross-correlation method has been used to study the momentary relationship among the above mentioned solar activity parameters. Solar cycle 21 witnessed the highest value of correlation for F10.7 cm index, Lyman alpha index and number of M-class and X-class flares versus sunspot number among all the considered solar cycles which were 0.979, 0.935 and 0.964 respectively. Solar cycle 22 recorded the highest correlation in case of Mg II index, Ap index and CMEs occurrence rate versus sunspot number among all the considered solar cycles (0.964, 0.384 and 0.972 respectively). Solar cycle 23 and 24 did not witness any highest correlation compared to solar cycle 21 and 22. Further the record values (highest value compared to other solar three cycles) of each solar activity parameters for each of the four solar cycles have been studied. Here solar cycle 24 has no record text at all, this simply indicating that this cycle was a weakest cycle compared to the three previous ones. We have concluded that in every domain solar 24 was weaker to its three predecessors.


2004 ◽  
Vol 22 (6) ◽  
pp. 2239-2243 ◽  
Author(s):  
E. Echer ◽  
N. R. Rigozo ◽  
D. J. R. Nordemann ◽  
L. E. A. Vieira

Abstract. Prediction of solar activity strength for solar cycles 23 and 24 is performed on the basis of extrapolation of sunspot number spectral components. Sunspot number data during 1933-1996 periods (solar cycles 17-22) are searched for periodicities by iterative regression. The periods significant at the 95% confidence level were used in a sum of sine series to reconstruct sunspot series, to predict the strength of solar cycles 23 and 24. The maximum peak of solar cycles is adequately predicted (cycle 21: 158±13.2 against an observed peak of 155.4; cycle 22: 178


1994 ◽  
Vol 154 ◽  
pp. 59-64 ◽  
Author(s):  
J. W. Harvey ◽  
W. C. Livingston

The He I 10830 Å triplet gives a unique view of the solar chromosphere. Digital spectroheliograms have been made regularly since early 1974 using this line and the NSO Vacuum Telescope on Kitt Peak. For many purposes (detection of coronal holes, giant two-ribbon flares, and dark point events) these images are sufficient. A Sun-as-a-star signal is also produced by averaging all the pixels in each daily image. To calibrate this ‘irradiance’ signal in terms of line equivalent width, a comparison is made with integrated sunlight spectrophotometric measurements obtained less frequently. After correction for the effects of water vapor blends, we find a linear relation between the two measurements. The daily averages have been assembled into a time series covering nearly two solar cycles. This time series shows cycle modulation of about ±30% and rotational modulation of about ±10%. The general variation is similar to that of other activity indices but with some interesting small differences. Since images are available, it has been possible to decompose the full disk index into components due to plages, filaments, coronal holes and background. At all times during the cycle, most of the signal comes from the background but most of the variability from plages.


2019 ◽  
Vol 486 (4) ◽  
pp. 4671-4685 ◽  
Author(s):  
Wageesh Mishra ◽  
Nandita Srivastava ◽  
Yuming Wang ◽  
Zavkiddin Mirtoshev ◽  
Jie Zhang ◽  
...  

ABSTRACT Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability represented in terms of sunspot number and solar X-ray background luminosity. We estimate the contribution of CMEs to the total solar wind mass flux in the ecliptic and beyond, and its variation over different phases of the solar activity cycles. The study exploits the number of sunspots observed, coronagraphic observations of CMEs near the Sun by SOHO/LASCO, in situ observations of the solar wind at 1 AU by WIND, and GOES X-ray flux during solar cycles 23 and 24. We note that the X-ray background luminosity, occurrence rate of CMEs and ICMEs, solar wind mass flux, and associated mass loss rates from the Sun do not decrease as strongly as the sunspot number from the maximum of solar cycle 23 to the next maximum. Our study confirms a true physical increase in CME activity relative to the sunspot number in cycle 24. We show that the CME occurrence rate and associated mass loss rate can be better predicted by X-ray background luminosity than the sunspot number. The solar wind mass loss rate which is an order of magnitude more than the CME mass loss rate shows no obvious dependency on cyclic variation in sunspot number and solar X-ray background luminosity. These results have implications for the study of solar-type stars.


1991 ◽  
Vol 130 ◽  
pp. 275-276
Author(s):  
Ladislav Hejna ◽  
Hubertus Wöhl

Abstract In this contribution, preliminary results of the main component analysis of Bartels diagram of time series of daily values of sunspot group numbers for solar cycles 18, 19 and 20 are presented. The results obtained suggest that the most significant feature in the longitudinal distribution of sunspot activity is the existence of preferred solar hemispheres alternating with a mean period of 2.5 Bartels rotations.


Sign in / Sign up

Export Citation Format

Share Document