scholarly journals Solar Flare Build-Up and Release

Solar Physics ◽  
2020 ◽  
Vol 295 (10) ◽  
Author(s):  
Hugh S. Hudson

Abstract Flares and coronal mass ejections should follow a pattern of build-up and release, with the build-up phase understood as the gradual addition of stress to the coronal magnetic field. Recently Hudson (Mon. Not. Roy. Astron. Soc.491, 4435, 2020) presented observational evidence for this pattern in two isolated active regions from 1997 and 2006, finding a correlation between the waiting time after the event, and the event magnitude. In this article we systematically search for related evidence in the largest 14 active regions of Solar Cycle 24, chosen as those with peak sunspot area exceeding 1000 millionths of the solar hemisphere (MSH). The smallest of these regions, NOAA 12673, produced the exceptional flares SOL2017-09-06 and SOL2017-09-10. None of these regions showed significant correlations of waiting times and flare magnitudes, although two hinted at such an interval-size relationship. Correlations thus appear to be non-existent or intermittent, depending on presently unknown conditions.

2020 ◽  
Vol 642 ◽  
pp. A233
Author(s):  
R. Sharma ◽  
C. Cid

Context. Active regions in close proximity to coronal holes, also known as anemone regions, are the best candidates for studying the interaction between closed and open magnetic field topologies at the Sun. Statistical investigation of their source-region characteristics can provide vital clues regarding their possible association with energetic events, relevant from space weather perspectives. Aims. The main goal of our study is to understand the distinct properties of flaring and non-flaring anemone active regions and their host coronal holes, by examining spatial and magnetic field distributions during the rise phase of the solar cycle, in the years 2011–2014. Methods. Anemone regions were identified from the minimum-distance threshold, estimated using the data available in the online catalogs for on-disk active regions and coronal holes. Along with the source-region area and magnetic field characteristics, associated filament and flare cases were also located. Regions with and without flare events were further selected for a detailed statistical examination to understand the major properties of the energetic events, both eruptive and confined, at the anemone-type active regions. Results. Identified anemone regions showed weak asymmetry in their spatial distribution over the solar disk, with yearly average independent from mean sunspot number trend, during the rise phase of solar cycle 24. With the progression in solar cycle, the area and minimum-distance parameters indicated a decreasing trend in their magnitudes, while the magnetic field characteristics indicated an increase in their estimated magnitudes. More than half of the regions in our database had an association with a filament structure, and nearly a third were linked with a magnetic reconnection (flare) event. Anemone regions with and without flares had clear distinctions in their source-region characteristics evident from the distribution of their properties and density analysis. The key differences included larger area and magnetic field magnitudes for flaring anemone regions, along with smaller distances between the centers of the active region and its host coronal hole.


2015 ◽  
Vol 11 (S320) ◽  
pp. 309-314 ◽  
Author(s):  
Anqin Chen ◽  
Jingxiu Wang

AbstractComparing with solar cycles 21-23, the level of solar activity in the current cycle is very low. So far, there have been only five SARs and 45 X class flares. The monthly smoothed total solar irradiance decreased sharply by 0.09% from the maximum of cycle 23 to the minima between cycles 23 and 24. In this contribution, we present new studies on SARs in Cycle 24. The SARs in the current cycle have relatively smaller flare index (Iflare) and composite vector field index (Icom) comparing with the SARs in cycles 22 and 23. There is a clearly linear relationship between Iflare and Icom. The emphasis of this contribution is put on the similarity and different behaviors of vector magnetic fields of the SARs in the current solar cycle and the previous ones. We try to get a satisfactory account for the general characteristics and relatively lower level of solar flare activity in Cycle 24.


2017 ◽  
Vol 13 (S335) ◽  
pp. 32-35
Author(s):  
Ranadeep Sarkar ◽  
Nandita Srivastava ◽  
Sajal Kumar Dhara

AbstractWe have studied the dynamics of the solar active region (AR) NOAA 12192 using full-disc continuum images and the vector magnetograms observed by the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). AR 12192 is the largest region of the solar cycle 24. It underwent a noticeable growth and produced 6 X-class, 22 M-class and 53 C-class flares during its disc passage. But the most peculiar fact of this AR is that it was associated with only one CME in spite of producing several X-class flares. In this work, we present the area evolution of this giant sunspot group during the first three rotations when it appeared as AR 12172, AR 12192 and AR 12209, respectively. We have also attempted to make a comparative study of the flare-related photospheric magnetic field and Lorentz force changes for both the eruptive and non-eruptive flares produced by AR 12192.


2016 ◽  
Vol 12 (S327) ◽  
pp. 71-76
Author(s):  
J. Palacios ◽  
A. Guerrero ◽  
C. Cid ◽  
E. Saiz ◽  
Y. Cerrato

AbstractMagnetic instability is a key consideration for filament eruptions and subsequent CMEs. In this contribution we are considering different magnetic conditions for active and non-active regions, such as coronal hole regions and quiet sun, and also active regions of a simple magnetic configuration. The aim is to assess magnetic instability through potential and non-potential field modelling and 3D evaluation of the magnetic decay index. Some eruptive examples from solar cycle 24 using HMI/SDO data are presented, complemented with observations of AIA/SDO.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Chandrasekhar Bhoj ◽  
Lalan Prasad

The aim of this paper is to investigate the association of the geomagnetic storms with the IMF for solar cycle 24. Result of the present analysis shows that IMF is geoeffective parameter but its impact varies in accordance with different time periods. The correlation coefficient between Dst and IMF found to be -0.6 for solar cycle 24.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Chandrasekhar Bhoj ◽  
Lalan Prasad

The aim of this paper is to investigate the association of the geomagnetic storms with the IMF for solar cycle 24. Result of the present analysis shows that IMF is geoeffective parameter but its impact varies in accordance with different time periods. The correlation coefficient between Dst and IMF found to be -0.6 for solar cycle 24


2010 ◽  
Vol 28 (2) ◽  
pp. 417-425 ◽  
Author(s):  
A. Yoshida ◽  
H. Yamagishi

Abstract. It is shown that the monthly smoothed sunspot number (SSN) or its rate of decrease during the final years of a solar cycle is correlated with the amplitude of the succeeding cycle. Based on this relationship, the amplitude of solar cycle 24 is predicted to be 84.5±23.9, assuming that the monthly smoothed SSN reached its minimum in December 2008. It is further shown that the monthly SSN in the three-year period from 2006 through 2008 is well correlated with the monthly average of the intensity of the interplanetary magnetic field (IMF). This correlation indicates that the SSN in the final years of a solar cycle is a good proxy for the IMF, which is understood to reflect the magnetic field in the corona of the sun, and the IMF is expected to be smallest at the solar minimum. We believe that this finding illuminates a physical meaning underlying the well-known precursor method for forecasting the amplitude of the next solar cycle using the aa index at the solar minimum or its average value in the decaying phase of the solar cycle (e.g. Ohl, 1966), since it is known that the geomagnetic disturbance depends strongly on the intensity of the IMF. That is, the old empirical method is considered to be based on the fact that the intensity of the coronal magnetic field decreases in the late phase of a solar cycle in parallel with the SSN. It seems that the precursor method proposed by Schatten et al. (1978) and Svalgaard et al. (2005), which uses the intensity of the polar magnetic field of the sun several years before a solar minimum, is also based on the same physical phenomenon, but seen from a different angle.


2021 ◽  
Author(s):  
Alexander Kosovichev ◽  
Ivan Sharykin

<p>Helioseismic response to solar flares ("sunquakes") occurs due to localized force or/and momentum impacts observed during the flare impulsive phase in the lower atmosphere. Such impacts may be caused by precipitation of high-energy particles, downward shocks, or magnetic Lorentz force. Understanding the mechanism of sunquakes is a key problem of the flare energy release and transport. Our statistical analysis of M-X class flares observed by the Solar Dynamics Observatory during Solar Cycle 24 has shown that contrary to expectations, many relatively weak M-class flares produced strong sunquakes, while for some powerful X-class flares, helioseismic waves were not observed or were weak. The analysis also revealed that there were active regions characterized by the most efficient generation of sunquakes during the solar cycle. We found that the sunquake power correlates with maximal values of the X-ray flux derivative better than with the X-ray class. The sunquake data challenge the current theories of solar flares.</p>


Sign in / Sign up

Export Citation Format

Share Document