Effect of progesterone administration during growing phase of first dominant follicle on follicular wave pattern in buffalo heifers

2019 ◽  
Vol 52 (3) ◽  
pp. 1395-1402
Author(s):  
M. H. Jan ◽  
H. Kumar ◽  
S. Kumar ◽  
R. K. Sharma ◽  
A. Gupta ◽  
...  
2004 ◽  
Vol 16 (2) ◽  
pp. 233
Author(s):  
R.S. Jaiswal ◽  
J. Singh ◽  
G.P. Adams

Knowledge about the developmental pattern of small follicles (<4mm) will be crucial to understanding the endogenous control of folliculogenesis and to developing methods to control it for clinical purposes. This study was designed to characterize the developmental pattern of 1–3mm follicles and to determine, retrospectively, the stage at which the future dominant follicle first attains a size advantage among follicles in the cohort. In Experiment 1, the ovaries of Hereford-cross heifers (n=18) were examined daily by high resolution transrectal ultrasonography for one natural interovulatory interval to evaluate changes in the number of 1–3-mm follicles in relation to the wave pattern of follicles ≥4mm. Interovulatory interval was divided into 2- and 3-wave based on number of waves exhibited by heifers. In Experiment 2, the ovaries of Hereford-cross cows (n=9) were examined every 6h from Day 5 to Day 13 (Day 0=ovulation) to monitor precisely the diameter changes of individual follicles ≥1mm during emergence of the second follicular wave. Data were analyzed by Proc. Mixed procedure for repeated measures (Littell RC et al., 2000 Stat in med 19, 1793–1819) in the Statistical Analysis System software package (SAS version 8.2 for MS Windows;; 2002 SAS Institute Inc. Cary, NC, USA). Results of Experiment 1 revealed a day effect (P<0.05) on the number of small (1–3mm) follicles, with a peak (P<0.05) 1 or 2 days before wave emergence (defined as the day the dominant follicle was first detected at 4mm), followed 3 to 4 days later by a peak (P<0.05) in the number of large follicles (≥4mm). There was an inverse relationship between the number of small and large follicles during Wave 1 (r=−0.66; P=0.05) and Wave 2 (r=−0.62; P=0.04) in 2-wave interovulatory intervals. Similarly, an inverse relation was detected between the number of small and large follicles for Wave 1 (r=−0.79; P=0.01) and Wave 3 (r=−0.90; P<0.01) but not for Wave 2 (r=−0.57; P=0.14) in 3-wave interovulatory intervals. The number of 1–3-mm follicles detected in anovulatory waves did not differ (P=0.53) between 2- versus 3-wave interovulatory intervals;; however, a difference (P<0.05) was observed between anovulatory and ovulatory waves in 3-wave interovulatory intervals but not (P=0.63) in 2-wave interovulatory intervals. Experiment 2 permitted the identification of the future dominant follicle at a diameter of 1mm and its emergence at 6–12h earlier than the largest subordinate follicle (P<0.01). Emergence of the future dominant (r=0.71; P=0.05) and 1st subordinate (r=0.78; P=0.02) follicles was temporally associated with a wave-eliciting rise in circulating concentrations of FSH. Growth rate of the dominant and the 1st subordinate follicle differed (P<0.01) from 2nd subordinate follicle at 84h after their detection at 1mm. It was concluded that small antral follicles (1–3mm) develop in a wave-like manner, and apparent selection of the dominant follicle was manifest much earlier than previously documented.


Reproduction ◽  
2020 ◽  
Vol 160 (6) ◽  
pp. 943-953
Author(s):  
Rafael R Domingues ◽  
O J Ginther ◽  
Mateus Z Toledo ◽  
Milo C Wiltbank

Understanding the impacts of nutrition on reproductive physiology in cattle are fundamental to improve reproductive efficiency for animals under different nutritional conditions. Starting on Day 0 (day of ovulation) until next ovulation, Holstein heifers (n = 24) were fed: low energy diet (ad libitum grass hay; LED) and high energy diet (ad libitum grass hay + concentrate supplement; HED). Heifers on HED gained more weight (average daily gain: 0.824 ± 0.07 vs 0.598 ± 0.09 kg/day) and had increased insulin concentrations. The dominant follicle of wave 1 in HED had greater growth rate overall from Days 0 to 8 and on Days 6–7 and 8–9 and started atresia later. The dominant follicle of wave 2 in HED had greater growth rate overall from Day 9 to 18 and on Days 14–15 and 15–16. In two-wave patterns, there was no difference in estradiol or progesterone concentrations but concentrations of FSH were lower in HED on Days 15 and 16. Estradiol concentrations increased earlier in two-wave patterns in association with earlier luteolysis. The frequency of two follicular waves was greater in HED than LED (11/12 vs 6/11; 92.7% vs 54.5%). In conclusion, an acute increase in dietary energy altered not only growth rate of the dominant follicle but also follicular wave pattern in heifers by increasing frequency of two follicular waves. The hypotheses were supported that an acute increase in dietary energy (1) prolongs growth period of dominant follicles and (2) alters follicular wave pattern in heifers.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
R. I. Derar ◽  
H. A. Hussein

The objective of the current study was to describe follicular dynamics in Egyptian Jennies throughout the estrous cycle. In this experiment, 8 estrus cycles in 8 cyclic Jennies were studied from February to June using ultrasonography. The result revealed that one follicular wave per cycle was recorded throughout the studied period. Dominant follicle (DF) was firstly detected at day in Jennies. The growth rate of DF was  mm/day. Left ovulations were nonsignificantly () more than right ovulations (55.6% versus 44.6%). The CL was firstly detected at D , developed in a rate of  mm/day, reached a maximum diameter of  mm at D , and started to regress on D with a mean regression rate of  mm d-1. Results of the present study indicated that Jennies had one follicular wave per cycle. The Day of the cycle has a significant effect on the number of different classes of the ovarian follicles, but not large ones. Ultrasonographic characteristics of the preovulatory follicles could be useful to predict ovulation. CL developed and regressed in a slow rate.


2001 ◽  
Vol 79 (10) ◽  
pp. 2688 ◽  
Author(s):  
B E Salfen ◽  
F N Kojima ◽  
J F Bader ◽  
M F Smith ◽  
H A Garverick

2008 ◽  
Vol 20 (1) ◽  
pp. 162 ◽  
Author(s):  
M. D. Van Steelandt ◽  
V. M. Tanco ◽  
M. H. Ratto ◽  
G. P. Adams

Systemic administration of ovulation-inducing factor (OIF), discovered recently in seminal plasma of llamas, alpacas (induced ovulators), and cattle (spontaneous ovulators), stimulated ovulation in >90% of female llamas and alpacas. The objective of the present study was to test the hypothesis that purified OIF from llama seminal plasma would induce ovulation in cattle. Peripubertal heifers, weighing 323 � 27 kg, were used to minimize the confounding effect of spontaneous ovulation. Heifers (n = 11/group) were treated intramuscularly with 1.0 mg/100 kg of purified OIF, 100 µg of GnRH (positive control), or 2.5 mL of phosphate-buffered saline (negative control). Ovarian dynamics were monitored daily by transrectal ultrasonography for 10 days post-treatment. Blood samples were collected at 0.5- to 1-h intervals for 8 h, beginning at the time of treatment. Ovulation occurred in 9/11 (82%) of GnRH-treated heifers and in 1/11 (9%) heifers in each of the OIF- and saline-treated groups (P < 0.05). A surge in plasma LH concentration was detected within 30 min of treatment in the GnRH group (2.2 � 0.1 ng mL–1; P < 0.05), but remained at the basal level in the OIF- and saline-treated groups (0.3 � 0.1 and 0.2 � 0.1 ng mL–1, respectively). The onset of regression of the dominant follicle present at the time of treatment was earlier (P < 0.05) in OIF- v. saline-treated heifers (3.1 � 0.6 days v. 6.0 � 0.7 days). The interval from treatment to follicular wave emergence was shorter (P < 0.05) in GnRH- and OIF-treated heifers than in those treated with saline (1.1 � 0.4 days, 1.5 � 0.3 days, and 3.1 � 0.3 days, respectively). A similar pattern was observed for emergence of the second follicular wave (5.1 � 0.7 days, 4.6 � 0.5 days, and 6.6 � 0.4 days, respectively). Purified OIF did not induce ovulation in heifers but hastened both the regression of the extant dominant follicle and follicular wave emergence. Results provide a rationale for the hypothesis that OIF from seminal plasma is involved in controlling follicular wave dynamics in spontaneously ovulating species (e.g., Bos taurus) through a suppressive effect on the dominant follicle. The mechanism of action on ovarian follicular wave dynamics, as well as species specificity, remains to be elucidated.


2008 ◽  
Vol 20 (1) ◽  
pp. 227
Author(s):  
A. Garcia Guerra ◽  
G. A. Bó ◽  
J. Villarreal ◽  
G. M. Brogliatti

Ovarian asynchrony and variability in response to superstimulation remain the most limiting factors in any embryo transfer program (Armstrong D 1993 Theriogenology 39, 7–24). Ovarian response can be increased and less variable if superstimulatory treatment is started at the time of follicular wave emergence (Bö GA et al. 1995 Theriogenology 43, 31–40). A combination of progesterone (P4) and estradiol have been used to synchronize follicular wave for superstimulation. A retrospective analysis was done to compare the ovarian response, superovulatory response and embryo production of cows in Argentina that received progesterone and estradol prior to superstimulation at different stages of the estrous cycle. This research was carried out using different breed of donors (n = 584, 88% Angus) during the last 4 years in Buenos Aires province, Argentina. Heat detection was performed twice a day. At random stages of the estrous cycle, donors received an intravaginal progesterone device (DIB; Syntex, Buenos Aires, Argentina), 2 mg of estradiol benzoate and 50 mg of progesterone (Syntex, Buenos Aires, Argentina) IM on the same day. On day 4 after DIB insertion, superestimulatory treatment was initiated on a decreasing dose regimen of FSH (Pluset; Callier, Spain, or Folltropin, Bioniche Animal Health Inc., Belleville, Ontario, Canada) as IM injections every 12 h over 4 d. On day 6, DIBs were removed, and cows received two doses of 2 mL of cloprostenol 12 h apart. At heat detection, all donors received a dose of 2 mL of GnRH (Dalmarelin; Fatro Von Franken, Buenos Aires, Argentina) by IM injection and were inseminated 12 and 24 h later. Seven days later, embryo collection was performed and ovarian response was evaluated as number of CL + unovulated follicles by transrectal ultrasound using a 7.5-MHz transducer (Pie Medical, Maastricht, the Netherlands). Ova/embryos were evaluated and classified according to the IETS manual. Donors were assigned to receive DIB and estradiol during the following stages of the cycle: group 1: between days 4 and 7 post-estrus (dominant follicle period), group 2: between days 8 and 12 post-estrus (emergence of the second follicular wave), and group 3: between days 13 and 21 post-estrus (dominant follicle of the second wave). Kruskal-Wallis test was used to compare variables among groups, and results are shown in Table 1. Ovarian response as CL + unovulated follicles and number of ovulations were significantly different among groups (P < 0.05). However, there was no significant difference in the number of fertilized ova or transferable embryos. Nevertheless, numeric differences that show that group 2 (started between days 8 and 12 post-estrus) was always superior for all variables. In conclusion, data suggest that estradiol may be more effective in synchronizing follicle wave emergence for superstimulation during the mid-part of the estrous cycle. Table 1. Superovulatory response in cows in which follicle wave emergence was synchronized with estradiol at different stages of the estrous cycle (mean ± SD) Research supported by Centro Genetico Bovino Eolia S.A.


2007 ◽  
Vol 19 (1) ◽  
pp. 242
Author(s):  
C. Kawashima ◽  
N. Sudo ◽  
C. Amaya Montoya ◽  
E. Kaneko ◽  
M. Matsui ◽  
...  

Recent studies have shown that IGF-1 is a crucial factor for ovarian follicular development in mammals. In postpartum (pp) dairy cows, plasma IGF-1 and estradiol (E2) levels in ovulatory cows at the first follicular wave pp are higher than in anovulatory cows. However, the plasma IGF-1 profile in an ovulatory or anovulatory dominant follicle (DF), which have different E2 production, at the first follicular wave pp have not yet been elucidated. Thus, we investigated the changing profile of plasma IGF-1 levels during first follicular wave pp. In 22 multiparous Holstein cows, blood samples were obtained 2 times/week from 4 weeks prepartum to 3 weeks pp, and the first follicular wave was monitored by ultrasound 2 times/week from 7 days pp to ovulatory phase. Detailed IGF-1 profiles in blood were determined during DF growth and maturation 4 times/day from 10 days pp to 7 days after the first ovulation in 5 ovulatory cows and to 20 days pp in 4 anovulatory cows; the data were analyzed by repeated measures ANOVA, and Student&apos;s t-test. There was no interaction between groups and time within the prepartum or the pp period. The ovulatory cows (n = 13/22) with an estrogen-active dominant (EAD: high plasma E2 level with peak) follicle showed higher IGF-1 levels than anovulatory cows (n = 9/22) with an estrogen-inactive dominant (EID: low plasma E2 level without peak) follicle during the prepartum (117 � 8 vs. 91 � 5 ng mL-1; P &lt; 0.05) and the pp (91 � 4 vs. 64 � 4 ng mL-1; P &lt; 0.001) period. Especially noteworthy, during the first follicular wave pp in ovulatory cows, the plasma IGF-1 levels were maintained at a high level until E2 levels increased, followed by an LH surge. We observed that the EAD follicle in ovulatory cows ovulated. To further examine the IGF-1 system in the intra-follicular environment, we used the EAD and EID follicles from ovaries of dairy cows obtained at a slaughterhouse. The EAD and EID follicles were classified on the basis of follicle diameter and E2 concentrations in follicular fluid (FF). The significant differences of factors between EAD and EID were analyzed by Student&apos;s t-test. The expression of IGF-1 mRNA was not detected in follicular cells in either EAD and EID, suggesting that IGF-1 in FF is mainly derived from liver. The free IGF-1 levels in FF in EAD (4.8 � 0.5 ng mL-1) were higher than those in EID (2.7 � 0.1 ng mL-1; P &lt; 0.05). In addition, the expression of type 1 IGF receptor (IGFR-1) mRNA in EAD was higher than hat in EID (P &lt; 0.0001). From the results of the present study, it is apparent that the EAD follicle during the first follicular wave pp in ovulatory cows sufficiently expressed IGFR-1, and a liver-derived IGF-1 stimulates E2 production in the follicle to ovulate. In conclusion, our data suggest that a high concentration of IGF-1, secreted from the liver, during the peripartum period may be one of important factors for the appearance of an ovulatory follicle during the first follicular wave pp cows.


2012 ◽  
Vol 58 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Chiho KAWASHIMA ◽  
Motozumi MATSUI ◽  
Takashi SHIMIZU ◽  
Katsuya KIDA ◽  
Akio MIYAMOTO

1993 ◽  
Vol 73 (2) ◽  
pp. 267-275 ◽  
Author(s):  
G. P. Adams ◽  
K. Kot ◽  
C. A. Smith ◽  
O. J. Ginther

The relationship between a dominant follicle of a follicular wave and the suppression of subordinate follicles was studied during the first postovulatory wave (Wave 1) in Holstein heifers. The dominant follicle (largest follicle) was cauterized or a sham-operation was done on day 3 (day 0 = ovulation) using seven heifers per group. In the cautery group, compared to the controls, the largest subordinate follicle attained a larger diameter (11 7 vs 8 0 mm; P < 0.01), reached maximum diameter at a later day (day 9.2 vs. day 3.1; P < 0 01) and began to regress at a later day (day 14.3 vs. day 5.7; P < 0.01). In addition, the emergence of Wave 2 was hastened (day 6.4 vs. day 9.3; P < 0.05) and more heifers had more than two waves per interovulatory interval (5 of 6 vs. 2 of 7; P < 0.05). In heifers with the dominant follicle eliminated, the largest subordinate grew to the diameter of a dominant follicle during Wave 1 (n = 3) or became the dominant follicle of a newly emerged wave (n = 2). A subordinate sometimes persisted as a small follicle (e.g., 5 mm) for several days before resurging. However, it was not convincingly demonstrated that a subordinate follicle could resurge after it had begun to regress (decrease in diameter). Results supported the hypothesis that suppression of subordinate follicles is a prolonged process, so that resurgence of a subordinate can occur if the dominant follicle is removed. Key words: Ovaries, follicular waves, selection, cattle, cauterization


Sign in / Sign up

Export Citation Format

Share Document