Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii

2008 ◽  
Vol 25 (4) ◽  
pp. 573-581 ◽  
Author(s):  
Babita Kumari Jha ◽  
Mohandass Gandhi Pragash ◽  
Jean Cletus ◽  
Gurusamy Raman ◽  
Natarajan Sakthivel
2019 ◽  
Vol 70 (10) ◽  
pp. 3603-3610
Author(s):  
Madalina Mihalache ◽  
Cornelia Guran ◽  
Aurelia Meghea ◽  
Vasile Bercu ◽  
Ludmila Motelica ◽  
...  

The three copper complexes having a-ketoglutaric acid (H2A) and 1- (o-tolyl) biguanide (TB) ligands have been synthesized and characterized. The proposed formulas for these complexes are: [Cu(TB)(HA)]Cl (C1), [Cu(TB)(HA)CH3COO]�H2O (C2) and [Cu(TB)(HA)](NO3) (C3) where HA represents deprotonated H2A. The complexes obtained were tested for antibacterial activity against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853, antifungal activity on Candida albicans ATCC 10231 and antitumor activity on HeLa tumor cells. Due to the antitumor, antifungal, antimicrobial activity and inhibition of inert substrate adhesion, complexes synthesized could be used for potential therapeutic applications.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 745
Author(s):  
Melaine González-García ◽  
Fidel Morales-Vicente ◽  
Erbio Díaz Pico ◽  
Hilda Garay ◽  
Daniel G. Rivera ◽  
...  

Cm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of Candida albicans. Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents. The three peptides showed a moderate activity against Pseudomonas aeruginosa, Klebsiella pneumoniae Extended Spectrum β-Lactamase (ESBL), and Streptococcus agalactiae, with MIC values > 100 µg/mL. They exerted a considerable activity with MIC values between 25–50 µg/mL against Acinetobacter baumanii and Enterococcus faecium. In addition, the two dimers showed a moderate activity against Pseudomonas aeruginosa PA14. The three Cm-p5 derivatives inhibited a virulent extracellular strain of Mycobacterium tuberculosis, in a dose-dependent manner. Moreover, they inhibited Herpes Simplex Virus 2 (HSV-2) infection in a concentration-dependent manner, but had no effect on infection by the Zika Virus (ZIKV) or pseudoparticles of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). At concentrations of >100 µg/mL, the three new Cm-p5 derivatives showed toxicity on different eukaryotic cells tested. Considering a certain cell toxicity but a potential interesting activity against the multiresistant strains of bacteria and HSV-2, our compounds require future structural optimization.


Microbiology ◽  
2014 ◽  
Vol 160 (4) ◽  
pp. 778-788 ◽  
Author(s):  
Rahul Jog ◽  
Maharshi Pandya ◽  
G. Nareshkumar ◽  
Shalini Rajkumar

The application of plant-growth-promoting rhizobacteria (PGPR) at field scale has been hindered by an inadequate understanding of the mechanisms that enhance plant growth, rhizosphere incompetence and the inability of bacterial strains to thrive in different soil types and environmental conditions. Actinobacteria with their sporulation, nutrient cycling, root colonization, bio-control and other plant-growth-promoting activities could be potential field bio-inoculants. We report the isolation of five rhizospheric and two root endophytic actinobacteria from Triticum aestivum (wheat) plants. The cultures exhibited plant-growth-promoting activities, namely phosphate solubilization (1916 mg l−1), phytase (0.68 U ml−1), chitinase (6.2 U ml−1), indole-3-acetic acid (136.5 mg l−1) and siderophore (47.4 mg l−1) production, as well as utilizing all the rhizospheric sugars under test. Malate (50–55 mmol l−1) was estimated in the culture supernatant of the highest phosphate solublizer, Streptomyces mhcr0816. The mechanism of malate overproduction was studied by gene expression and assays of key glyoxalate cycle enzymes – isocitrate dehydrogenase (IDH), isocitrate lyase (ICL) and malate synthase (MS). The significant increase in gene expression (ICL fourfold, MS sixfold) and enzyme activity (ICL fourfold, MS tenfold) of ICL and MS during stationary phase resulted in malate production as indicated by lowered pH (2.9) and HPLC analysis (retention time 13.1 min). Similarly, the secondary metabolites for chitinase-independent biocontrol activity of Streptomyces mhcr0817, as identified by GC-MS and 1H-NMR spectra, were isoforms of pyrrole derivatives. The inoculation of actinobacterial isolate mhce0811 in T. aestivum (wheat) significantly improved plant growth, biomass (33 %) and mineral (Fe, Mn, P) content in non-axenic conditions. Thus the actinobacterial isolates reported here were efficient PGPR possessing significant antifungal activity and may have potential field applications.


2020 ◽  
Vol 13 (10) ◽  
Author(s):  
Nguyen Thi Trung ◽  
Nguyen Tien Cuong ◽  
Nguyen Thi Thao ◽  
Dao Thi Mai Anh ◽  
Do Thi Tuyen

Background: Fusarium sp. and Rhizoctonia sp. fungi have been always threats to short-term crops. In Vietnam, corn and soybean suffer serious losses annually. Therefore, it is necessary to utilize an environmentally friendly antifungal compound that is highly effective against phytopathogenic fungi. Pseudomonas sp. is a popular soil bacterial strain and well known for its high antifungal activity. Objectives: This study was carried out to evaluate and assess the antifungal activity of a local bacterial strain namely DA3.1 that was later identified as Pseudomonas aeruginosa. This would be strong scientific evidence to develop an environmentally friendly biocide from a local microorganism strain for commercial use. Methods: The antifungal compound was purified from ethyl acetate extraction of deproteinized cell culture broth by a silica gel column (CH2Cl2/MeOH (0% - 10% MeOH)). The purity of the isolated compound was determined by HPLC, and its molecular structure was elucidated using spectroscopic experiments including one-dimensional (1D) (1H NMR, 13C NMR, DEPT) and two-dimensional (2D) (HMBC and HSQC) spectra. The activity of the purified compound against Fusarium sp. and Rhizoctonia sp. fungi was measured using the PDA-disk diffusion method, and its growth-promoting ability was evaluated using the seed germination test of corn and soybean. Results: The results showed that the antifungal compound produced by Pseudomonas aeruginosa DA3.1 had a retention factor (Rf) of 0.86 on thin layer chromatography (TLC). Based on the evidence of spectral data including proton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR), distortionless enhancement by polarization transfer (DEPT), heteronuclear multiple bond correlation (HMBC), and heteronuclear single quantum coherence (HSQC), the chemical structure was elucidated as phenazine-1-carboxylic. The purified compound showed inhibitory activity against F. oxysporum and R. solani and exhibited the ability of the germination of corn and soybean seeds. The results revealed the benefit of native P. aeruginosa DA3.1 and phenazine-1-carboxylic acid for use as a biocontrol agent, as well as a plant growth promoter. Conclusions: The antifungal compound isolated from local Pseudomonas DA3.1 was identified as phenazine-1-carboxylic acid that posed high antifungal activity and was a plant germination booster.


2008 ◽  
Vol 54 (1) ◽  
pp. 19-27 ◽  
Author(s):  
A. Chapalain ◽  
G. Rossignol ◽  
O. Lesouhaitier ◽  
A. Merieau ◽  
C. Gruffaz ◽  
...  

There is some debate about the potential survival of Pseudomonas fluorescens at temperatures above 37 °C and its consequences for infectious potential, owing to the heterogeneity of clinical strains. Seven clinical strains growing at 37 °C or more were submitted for polyphasic identification; 2 were identified as Pseudomonas mosselii and 4 were precisely characterized as P. fluorescens bv. I or II. The binding indexes on glial cells of the strains identified as P. fluorescens bv. I and P. mosselii were compared with that of a reference psychrotrophic strain, P. fluorescens MF37 (bv. V). Clinical P. fluorescens had a similar adherence potential range than strain MF37. Conversely, the binding indexes for P. mosselii strains were 3 times greater than that for strain MF37. These data, and those obtained by comparing the cytotoxic activities of P. fluorescens clinical strains, suggest the existence of different virulence mechanisms, leading either to a low infectious form or to a microorganism with cytotoxic activity in the same range as that of P. mosselii or even Pseudomonas aeruginosa .


2013 ◽  
Vol 807-809 ◽  
pp. 2023-2026
Author(s):  
Yu Xiu Zhang ◽  
Pei Li Shi ◽  
Qian Zhang

The cadmium-resistant Pseudomonas aeruginosa strain ZGKD2 was isolated from gangue pile of coal area. Production of siderophores, indole-3-acetic acid (IAA) and the solubilization of phosphate were observed in the strain. Two types of siderophores were identified by UV spectrophotometer. The highest production of IAA and phosphate solubilization were 2.0 ug/mL and 7.2 ug/mL. The root length, plant height and fresh weight of Amorpha fruticosa L in the substrates of Coal gannue and losses were promoted after inoculation with ZGKD2. These data indicated that Pseudomonas aeruginosa strain ZGKD2 was a plant growth-promoting bacterial (PGPB).


2015 ◽  
Vol 2 (1) ◽  
pp. 53-55
Author(s):  
Asha devi V ◽  
Shalimol A ◽  
Arumugasamy K ◽  
Nantha kumar R ◽  
Abdul kaffoor H

The present study was evaluated the antibacterial and antifungal activity of various extracts of S.gardneri against four different bactria and fungal strains like Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella para typhi b, Alternaria alternate, Aspergillus flavus, Penicillium notatum and Cladosporium carrionii. All the results were compared with respective positive control.


2019 ◽  
Vol 70 (10) ◽  
pp. 3603-3610

The three copper complexes having a-ketoglutaric acid (H2A) and 1- (o-tolyl) biguanide (TB) ligands have been synthesized and characterized. The proposed formulas for these complexes are: Cl (C1), •H2O (C2) and (NO3) (C3) where HA represents deprotonated H2A. The complexes obtained were tested for antibacterial activity against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853, antifungal activity on Candida albicans ATCC 10231 and antitumor activity on HeLa tumor cells. Due to the antitumor, antifungal, antimicrobial activity and inhibition of inert substrate adhesion, complexes synthesized could be used for potential therapeutic applications. Keywords: 1-(o-tolyl)biguanide, a-ketoglutaric acid, copper complexes, antibacterial activity, celule HeLa, antifungal activity


Author(s):  
Bindhu R. Kamath ◽  
Sabeena Kizhedath

Background: Cassia fistula Linn is a plant which is widely grown in India and is used for medicinal purposes. The study was carried out with an objective to demonstrate the antimicrobial activity of leaves of Cassia fistula Linn. The aim of the study is to assess antibacterial and antifungal activity of methanolic leaf extract of Cassia fistula Linn against selected clinical isolates.Methods: The antimicrobial activity of methanolic extract of Cassia fistula was evaluated using agar well diffusion method and to zone of inhibition of extract was determined. Clinical isolates of Staphyloccocus aureus, MRSA, Pseudomonas aeruginosa, E. coli and Proteus were screened.Results: The methanolic extracts exhibited antibacterial activity against Staphylococcus aureus. The extract was not active against E. coli, Proteus, MRSA, Pseudomonas aeruginosa. The extract also failed to demonstrate antifungal activity against Candida albicans and Aspergillus niger.Conclusions: The global emergence of multidrug resistant bacterial strains is increasing, limiting the effectiveness of current drugs and treatment failure of infections. A novel approach to the prevention of antibiotic resistance of pathogenic species is the use of new compounds that are not based on existing synthetic antimicrobial agents.


Sign in / Sign up

Export Citation Format

Share Document