Oxidation of fatty aldehydes to fatty acids by Escherichia coli cells expressing the Vibrio harveyi fatty aldehyde dehydrogenase (FALDH)

2012 ◽  
Vol 29 (3) ◽  
pp. 569-575
Author(s):  
Markus Buchhaupt ◽  
Jan Guder ◽  
Fenja Sporleder ◽  
Melanie Paetzold ◽  
Jens Schrader
Author(s):  
In Jung Kim ◽  
Yannik Brack ◽  
Thomas Bayer ◽  
Uwe T. Bornscheuer

Abstractα-Dioxygenases (α-DOXs) are known as plant enzymes involved in the α-oxidation of fatty acids through which fatty aldehydes, with a high commercial value as flavor and fragrance compounds, are synthesized as products. Currently, little is known about α-DOXs from non-plant organisms. The phylogenic analysis reported here identified a substantial number of α-DOX enzymes across various taxa. Here, we report the functional characterization and Escherichia coli whole-cell application of two novel α-DOXs identified from cyanobacteria: CalDOX from Calothrix parietina and LepDOX from Leptolyngbya sp. The catalytic behavior of the recombinantly expressed CalDOX and LepDOX revealed that they are heme-dependent like plant α-DOXs but exhibit activities toward medium carbon fatty acids ranging from C10 to C14 unlike plant α-DOXs. The in-depth molecular investigation of cyanobacterial α-DOXs and their application in an E. coli whole system employed in this study is useful not only for the understanding of the molecular function of α-DOXs, but also for their industrial utilization in fatty aldehyde biosynthesis.Key points• Two novel α-dioxygenases from Cyanobacteria are reported• Both enzymes prefer medium-chain fatty acids• Both enzymes are useful for fatty aldehyde biosynthesis Graphical abstract


2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Jonathan H. Bertram ◽  
Kalene M. Mulliner ◽  
Ke Shi ◽  
Mary H. Plunkett ◽  
Peter Nixon ◽  
...  

ABSTRACT Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes from Marinobacter aquaeolei VT8 and an additional enzyme from Acinetobacter baylyi were heterologously expressed in Escherichia coli and shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572, and the enzyme reported under RefSeq accession no. WP_004927398 ) were found to act on aldehydes ranging from acetaldehyde to hexadecanal and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificities of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction-quality crystals of one particular FAldDH (Maqu_3316) from M. aquaeolei VT8. Crystals were independently treated with both the NAD+ cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how catalysis by the enzyme is accomplished is also provided. IMPORTANCE This study provides a comparison of multiple enzymes with the ability to oxidize fatty aldehydes to fatty acids and provides a likely picture of how the fatty aldehyde and NAD+ are bound to the enzyme to facilitate catalysis. Based on the information obtained from this structural analysis and comparisons of specificities for the five enzymes that were characterized, correlations to the potential roles played by specific residues within the structure may be drawn.


2019 ◽  
Vol 305 ◽  
pp. 11-17 ◽  
Author(s):  
Susanne Maurer ◽  
Hendrik Schewe ◽  
Jens Schrader ◽  
Markus Buchhaupt

Biochemistry ◽  
1995 ◽  
Vol 34 (51) ◽  
pp. 16725-16732 ◽  
Author(s):  
M. Vedadi ◽  
R. Szittner ◽  
L. Smillie ◽  
E. Meighen

1998 ◽  
Vol 45 (1) ◽  
pp. 261-270 ◽  
Author(s):  
D Kuchanny ◽  
G Klein ◽  
J Krzewska ◽  
A Czyz ◽  
B Lipińska

groES and groEL genes encode two co-operating proteins GroES and GroEL, belonging to a class of chaperone proteins highly conserved during evolution. The GroE chaperones are indispensable for the growth of bacteriophage lambda in Escherichia coli cells. In order to clone the groEL and groES genes of the marine bacterium Vibrio harveyi, we constructed the V. harveyi genomic library in the lambdaEMBL1 vector, and selected clones which were able to complement mutations in both groE genes of E. coli for bacteriophage lambda growth. Using Southern hybridization, in one of these clones we identified a DNA fragment homologous to the E. coli groE region. Analysis of the nucleotide sequence of this fragment showed that the cloned region contained a sequence in 71.7% homologous to the 3' end of the groEL gene of E. coli. This confirmed that the lambda clone indeed carries the groE region of V. harveyi. The positive result of our strategy of cloning with the use of the genomic library in lambda vector suggests that the same method might be useful in the isolation of the groE homologues from other bacteria. The V. harveyi cloned groE genes did not suppress thermosensitivity of the E. coli groE mutants.


2020 ◽  
Author(s):  
Lidan Zeng ◽  
Xuesong Li ◽  
Christopher B. Preusch ◽  
Gary J. He ◽  
Ningyi Xu ◽  
...  

AbstractThe intracellular level of fatty aldehydes is tightly regulated to minimize the formation of toxic aldehyde adducts of cellular components. Accordingly, deficiency of a fatty aldehyde dehydrogenase FALDH causes the neurologic disorder Sjögren-Larsson syndrome (SLS) in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Based on lipidomic and imaging analysis, we report that the loss of endoplasmic reticulum-, mitochondria- and peroxisomes-associated ALH-4, the C. elegans FALDH ortholog, increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are not viable. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels, and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy for SLS.


Sign in / Sign up

Export Citation Format

Share Document