scholarly journals Physiological MRI Biomarkers in the Differentiation Between Glioblastomas and Solitary Brain Metastases

Author(s):  
Elisabeth Heynold ◽  
Max Zimmermann ◽  
Nirjhar Hore ◽  
Michael Buchfelder ◽  
Arnd Doerfler ◽  
...  

Abstract Purpose Glioblastomas (GB) and solitary brain metastases (BM) are the most common brain tumors in adults. GB and BM may appear similar in conventional magnetic resonance imaging (cMRI). Their management strategies, however, are quite different with significant consequences on clinical outcome. The aim of this study was to evaluate the usefulness of a previously presented physiological MRI approach scoping to obtain quantitative information about microvascular architecture and perfusion, neovascularization activity, and oxygen metabolism to differentiate GB from BM. Procedures Thirty-three consecutive patients with newly diagnosed, untreated, and histopathologically confirmed GB or BM were preoperatively examined with our physiological MRI approach as part of the cMRI protocol. Results Physiological MRI biomarker maps revealed several significant differences in the pathophysiology of GB and BM: Central necrosis was more hypoxic in GB than in BM (30 %; P = 0.036), which was associated with higher neovascularization activity (65 %; P = 0.043) and metabolic rate of oxygen (48 %; P = 0.004) in the adjacent contrast-enhancing viable tumor parts of GB. In peritumoral edema, GB infiltration caused neovascularization activity (93 %; P = 0.018) and higher microvascular perfusion (30 %; P = 0.022) associated with higher tissue oxygen tension (33 %; P = 0.020) and lower oxygen extraction from vasculature (32 %; P = 0.040). Conclusion Our physiological MRI approach, which requires only 7 min of extra data acquisition time, might be helpful to noninvasively distinguish GB and BM based on pathophysiological differences. However, further studies including more patients are required.

2012 ◽  
Vol 117 (7) ◽  
pp. 1225-1241 ◽  
Author(s):  
S. Gaudino ◽  
G. M. Di Lella ◽  
R. Russo ◽  
V. S. Lo Russo ◽  
F. Piludu ◽  
...  

Author(s):  
R.D. Leapman ◽  
S.B. Andrews

Elemental mapping of biological specimens by electron energy loss spectroscopy (EELS) can be carried out both in the scanning transmission electron microscope (STEM), and in the energy-filtering transmission electron microscope (EFTEM). Choosing between these two approaches is complicated by the variety of specimens that are encountered (e.g., cells or macromolecules; cryosections, plastic sections or thin films) and by the range of elemental concentrations that occur (from a few percent down to a few parts per million). Our aim here is to consider the strengths of each technique for determining elemental distributions in these different types of specimen.On one hand, it is desirable to collect a parallel EELS spectrum at each point in the specimen using the ‘spectrum-imaging’ technique in the STEM. This minimizes the electron dose and retains as much quantitative information as possible about the inelastic scattering processes in the specimen. On the other hand, collection times in the STEM are often limited by the detector read-out and by available probe current. For example, a 256 x 256 pixel image in the STEM takes at least 30 minutes to acquire with read-out time of 25 ms. The EFTEM is able to collect parallel image data using slow-scan CCD array detectors from as many as 1024 x 1024 pixels with integration times of a few seconds. Furthermore, the EFTEM has an available beam current in the µA range compared with just a few nA in the STEM. Indeed, for some applications this can result in a factor of ~100 shorter acquisition time for the EFTEM relative to the STEM. However, the EFTEM provides much less spectral information, so that the technique of choice ultimately depends on requirements for processing the spectrum at each pixel (viz., isolated edges vs. overlapping edges, uniform thickness vs. non-uniform thickness, molar vs. millimolar concentrations).


2021 ◽  
Vol 14 ◽  
pp. 117954762198967
Author(s):  
Van Trung Hoang ◽  
Cong Thao Trinh ◽  
Hoang Anh Thi Van ◽  
Thanh Tam Thi Nguyen ◽  
Vichit Chansomphou ◽  
...  

Balo’s concentric sclerosis (BCS) is a rare demyelinating disease known as Multiple Sclerosis (MS) lesion type III. It is a disease of the white matter of the brain characterized by a round lesion with variable concentric myelinated and demyelinated layers, appearing as “onion bulb.” We present a case of BCS and discuss the imaging findings and management strategies of this disease. A 26-y-old male developed headache, weakness, and numbness of limbs. Magnetic resonance imaging (MRI) showed concentric lamellar like demyelinating lesions at the subcortical regions. The patient’s neurological symptoms were consistent with the MRI findings.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2960
Author(s):  
Austin-John Fordham ◽  
Caitlin-Craft Hacherl ◽  
Neal Patel ◽  
Keri Jones ◽  
Brandon Myers ◽  
...  

Differentiating between glioblastomas and solitary brain metastases proves to be a challenging diagnosis for neuroradiologists, as both present with imaging patterns consisting of peritumoral hyperintensities with similar intratumoral texture on traditional magnetic resonance imaging sequences. Early diagnosis is paramount, as each pathology has completely different methods of clinical assessment. In the past decade, recent developments in advanced imaging modalities enabled providers to acquire a more accurate diagnosis earlier in the patient’s clinical assessment, thus optimizing clinical outcome. Dynamic susceptibility contrast has been optimized for detecting relative cerebral blood flow and relative cerebral blood volume. Diffusion tensor imaging can be used to detect changes in mean diffusivity. Neurite orientation dispersion and density imaging is an innovative modality detecting changes in intracellular volume fraction, isotropic volume fraction, and extracellular volume fraction. Magnetic resonance spectroscopy is able to assist by providing a metabolic descriptor while detecting variable ratios of choline/N-acetylaspartate, choline/creatine, and N-acetylaspartate/creatine. Finally, radiomics and machine learning algorithms have been devised to assist in improving diagnostic accuracy while often utilizing more than one advanced imaging protocol per patient. In this review, we provide an update on all the current evidence regarding the identification and differentiation of glioblastomas from solitary brain metastases.


2019 ◽  
Vol 92 (1102) ◽  
pp. 20190109 ◽  
Author(s):  
Fengdan Wang ◽  
Haiping Zhang ◽  
Chanyuan Wu ◽  
Qian Wang ◽  
Bo Hou ◽  
...  

Objective: Dermatomyositis (DM) and polymyositis (PM) make up the largest group of potentially treatable myopathies and require early diagnosis. This study investigates whether the edema of thigh muscles in DM/PM can be quantitatively assessed by a novel accelerated T2 mapping technique—GRAPPATINI. Methods: Three conventional MR sequences and GRAPPATINI accelerated T2 mapping of bilateral thighs from 20 patients (7 DM and 13 PM) and 10 healthy volunteers were prospectively carried out on a 3 T MR scanner. Afterwards, T2 values of 477 thigh muscles from the patients and the healthy controls were manually measured. In addition, the correlations between T2 values and serum muscle enzymes in patients were also analyzed. Results: The new GRAPPATINI technique made quantitative T2 mapping of bilateral thighs feasible with a scanning time of only 2 min 18 s. Moreover, GRAPPATINI-generated T2 values of muscles from patients were markedly higher than those from healthy subjects (p < 0.001). GRAPPATINI accelerated T2 mapping appeared a more sensitive technique in that some DM/PM muscles appearing normal per conventional MRI had increased T2 relaxation time. Furthermore, GRAPPATINI-generated T2 values of DM/PM thigh muscles positively correlated with serum enzyme levels (p < 0.001), which reflected the severity of myopathy. Conclusion: GRAPPATINI can significantly shorten acquisition time of T2 mapping and may potentially be applied clinically in DM and PM. Advances in knowledge: GRAPPATINI acceleration makes T2 mapping feasible in clinical practice in providing quantitative information regarding thigh muscle inflammation in DM and PM.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 756
Author(s):  
Francesca Coppola ◽  
Valentina Giannini ◽  
Michela Gabelloni ◽  
Jovana Panic ◽  
Arianna Defeudis ◽  
...  

While cross-sectional imaging has seen continuous progress and plays an undiscussed pivotal role in the diagnostic management and treatment planning of patients with rectal cancer, a largely unmet need remains for improved staging accuracy, assessment of treatment response and prediction of individual patient outcome. Moreover, the increasing availability of target therapies has called for developing reliable diagnostic tools for identifying potential responders and optimizing overall treatment strategy on a personalized basis. Radiomics has emerged as a promising, still fully evolving research topic, which could harness the power of modern computer technology to generate quantitative information from imaging datasets based on advanced data-driven biomathematical models, potentially providing an added value to conventional imaging for improved patient management. The present study aimed to illustrate the contribution that current radiomics methods applied to magnetic resonance imaging can offer to managing patients with rectal cancer.


Sign in / Sign up

Export Citation Format

Share Document