scholarly journals Guidelines for surfactant selection to treat petroleum hydrocarbon-contaminated soils

Author(s):  
Emilio Ritoré ◽  
Bruno Coquelet ◽  
Carmen Arnaiz ◽  
José Morillo ◽  
José Usero

AbstractThe present study determined the most effective surfactants to remediate gasoline and diesel-contaminated soil integrating information from soil texture and soil organic matter. Different ranges for aliphatic and aromatic hydrocarbons (> C6–C8, > C8–C10, > C10–C12, > C12–C16, > C16–C21, and > C21–C35) in gasoline and diesel fuel were analyzed. This type of analysis has been investigated infrequently. Three types of soils (silty clay, silt loam, and loamy sand) and four surfactants (non-ionic: Brij 35 and Tween 80; anionic: SDBS and SDS) were used. The results indicated that the largest hydrocarbon desorption was 56% for silty clay soil (SDS), 59% for silt loam soil (SDBS), and 69% for loamy sand soil (SDS). Soils with large amounts of small particles showed the worst desorption efficiencies. Anionic surfactants removed more hydrocarbons than non-ionic surfactants. It was notable that preferential desorption on different hydrocarbon ranges was observed since aliphatic hydrocarbons and large ranges were the most recalcitrant compounds of gasoline and diesel fuel components. Unlike soil texture, natural organic matter concentration caused minor changes in the hydrocarbon removal rates. Based on these results, this study might be useful as a tool to select the most cost-effective surfactant knowing the soil texture and the size and chemical structure of the hydrocarbons present in a contaminated site.

2018 ◽  
Vol 10 (9) ◽  
pp. 6 ◽  
Author(s):  
Andre A. Diatta ◽  
Wade E. Thomason ◽  
Ozzie Abaye ◽  
Larry J. Vaughan ◽  
Thomas L. Thompson ◽  
...  

Mungbean [Vigna radiata (L.) Wilczek] is a short-duration and relatively drought-tolerant crop grown predominantly in the tropics. This grain legume can improve soil fertility through biological nitrogen (N) fixation. To assess the effects of Bradyrhizobium (group I) inoculation on yield and yield attributes of mungbean, a greenhouse study was conducted during Fall 2016 with two mungbean cultivars (‘Berken’ and ‘OK2000’), two inoculum treatments (inoculated and uninoculated), and two soil textures (loamy sand and silt loam). Pots were laid out in a completely randomized design and treatment combinations were replicated seven times. The main effects of cultivar and soil texture significantly (P ≤ 0.05) affected mungbean seed weight and plant residue mass. Seed yield (13%), plant residue (22%), and protein content (6%) of OK2000 were significantly higher than Berken cultivar. A 31% seed yield and 40% plant residue increase were recorded on silt loam soil compared to loamy sand soil. Significant increase in plant height (18%) and number of pods per plant (21%) were also recorded when mungbean plants were grown on silt loam compared to loamy sand soil. Bradyrhizobium inoculation significantly increased the number of pods per plant, the number of seeds per plant, and seed yield. [Cultivar × inoculation] and [cultivar × soil texture] interactions had significant (P ≤ 0.05) effects on number of seeds per pods and plant height, respectively. Understanding the agronomic practices and soil physical properties that may limit mungbean production could help in optimizing its establishment and growth in non-traditional growing areas.


2021 ◽  
pp. 1-20
Author(s):  
Jed B. Colquhoun ◽  
Daniel J. Heider ◽  
Richard A. Rittmeyer

Abstract The ability to use the protoporphyrinogen oxidase (PPO) inhibitor herbicides fomesafen, flumioxazin, and sulfentrazone in potato is limited regionally or by soil texture largely because of crop injury noted in research in the 1990s. With that in mind, we evaluated if reducing the herbicide rates could maintain weed control while providing more consistent crop safety. Studies were conducted on a silt loam and a coarse-textured loamy sand soil. Soil texture played a greater than anticipated role in PPO inhibitor herbicide injury risk as it relates to high precipitation events. For example, in 2020 at the silt loam location, there were five precipitation events across the season that exceeded 2.5 cm, including one 6 days after treatment (DAT), and a seasonal total precipitation that was over 10 cm greater than the previous year. Despite excessive moisture and initial potato injury as high as 27% where flumioxazin was applied at the high rate with s-metolachlor, by 29 DAT injury was less than 10% in all treatments and marketable tuber yield was similar among treatments. In contrast, in 2020 at the loamy sand location there were four precipitation events across the season that exceeded 2.5 cm and potato injury was as much as 60%. In 2020 the high amount of injury from flumioxazin was hypothesized to be caused by precipitation prior to herbicide application and not after, suggesting a need for more research in this area. This work documents the fine line between yield reduction presumably caused by reduced weed control and yield reduction assumed to be related to herbicide injury. This delineation between adequate weed control and consistent crop safety may differ by soil texture and environmental conditions, supporting the notion that custom-tailored weed management may become more necessary as high precipitation events become more common in Upper Midwest USA agricultural systems.


1996 ◽  
Vol 21 (1) ◽  
pp. 352-352
Author(s):  
Stanley R. Swier

Abstract The trial was conducted 10 May on a golf course rough, Amherst, NH. Plots were 10 X 10 ft, replicated 4 times, in a RCB design. Merit WP was applied in 4 gal water/1000 ft2 with a watering, can. Merit G granules were applied with a homemade salt shaker. Treatments were irrigated with 0.5 inch water after application. Plots were rated 30 Sep by counting the number of live grubs per 1 ft2. Conditions at the time of treatment were: air temperature 70°F; wind, 3 MPH; sky, clear; soil temperature, 1 inch, 60°F; thatch depth, 0.5 inch soil pH, 5.4; slope 0%; soil texture, silt loam, 47% sand, 50% silt, 3% clay; soil organic matter, 6.9%; soil moisture, 21.8%.


Soil Research ◽  
2013 ◽  
Vol 51 (3) ◽  
pp. 182 ◽  
Author(s):  
Danfeng Li ◽  
Ming'an Shao

The heterogeneity of textures in soil profiles is important for quantifying the movement of water and solutes through soil. Soil-profile textures to a depth of 300 cm were investigated at 100 sites in a 100-km2 area in the central region of the Heihe River system, where oases coexist with widespread deserts and wetland. The probability distribution of textural-layer thickness was quantified. The vertical transition of the soil textural layers was characterised by a Markov chain–log-normal distribution (MC-LN) model based on the probability of one textural type transitioning to another. Nine types of textural layers were observed: sand, loamy sand, sandy loam, silt loam, loam, clay loam, silty clay loam, silty clay, and clay. Sand was the most frequent in the profiles, whereas silt loam and clay were rare. The layers of sand and silty clay were relatively thick, and the layers of loam and clay were relatively thin. The coefficients of variation ranged from 36–87%, indicating moderate variation in the layer thickness of each textural type. The soil profile was characterised as a log-normal distribution. A χ2 test verified the Markov characteristic and the stability of the vertical change of soil textural layers. Realisations of the soil textural profiles were generated by the MC-LN model. A Monte Carlo simulation indicated that the simulated mean layer thickness of each textural type agreed well with the corresponding field observations. Element values of the transition probability matrix of the textural layers simulated by the MC-LN model deviated <12.6% from the measured values, excluding the data from the layers of clay and silt loam. The main combinations of upper to lower textural layers in the study area were loamy sand and sand (or sandy loam), sandy loam and sand (or loamy sand and loam), loam and clay loam, clay loam (or silty clay) and silty clay loam, and silty clay loam and silty clay. The MC-LN model was able to accurately quantify the vertical changes of textures in the soil profiles. This study will aid in quantification of water and solute transport in soils with vertical heterogeneity of soil textural layers.


Weed Science ◽  
1971 ◽  
Vol 19 (6) ◽  
pp. 709-711 ◽  
Author(s):  
Charles E. Stanger ◽  
Arnold P. Appleby

In greenhouse studies, lateral movement and toxicity ofS-ethyl N-ethylthiocyclohexanecarbamate (cycloate) to barnyardgrass (Echinochloa crusgalli(L.) Beauv.) was greater in a loamy sand soil than in two silt loam soils when cycloate was applied by subsurface line injection. Greatest movement and effectiveness resulted from injection into a preirrigated soil without further irrigation. Lateral movement was adequate under furrow irrigation, but the treated band was displaced. Movement of the cycloate was inadequate under sprinkler or subirrigation. Cycloate was more effective when mechanically mixed with the soil than when injected. Cycloate moved more readily in moist soils than in dry soils. When cycloate was injected into a dry loamy sand soil, movement was similar whether irrigation was applied immediately or after 24 hr.


2020 ◽  
Vol 42 (2) ◽  
pp. 161
Author(s):  
Diana Utama ◽  
Nuni Gofar ◽  
Adipati Napoleon

<p class="teksabst"><strong>Abstrak.</strong><em> </em>Penelitian ini bertujuan untuk menganalisis stabilitas agregat tanah dengan perlakuan berbagai isolat bakteri pemantap agregat (BPA) dan bahan organik berupa kompos yang terbuat dari campuran 90% rumput <em>Cyperus pilosus</em> Vahl dan 10% kotoran sapi, dengan masa inkubasi yang berbeda. Taraf perlakuan terdiri dari kontrol, kombinasi isolat I, II, dan III masing – masing dikombinasikan dengan komposisi bahan organik 0%, 0.5%, dan 1%. Hasil penelitian ini menunjukkan aplikasi isolat BPA pada tanah pasir berlempung disertai pemberian bahan organik menyebabkan populasi yang lebih tinggi dibandingkan tanpa aplikasi keduanya. <em>Klebsiella </em>sp. LW-13 yang dikombinasi dengan 1% bahan organik dan <em>Bukholderia anthina </em>MYSP113 yang dikombinasi dengan berbagai taraf bahan organik (0 hingga 1%) menyebabkan agregat menjadi sangat mantap sekali pada pengamatan 60 hari setelah aplikasi. Eksopolisakarida yang dihasilkan bakteri akan mengikat partikel tanah dan membentuk agregasi. Penggunaan bakteri <em>Bukholderia anthina </em>MYSP113 dinilai lebih efisien dalam pemanfaatannya untuk memantapkan agregat tanah karena memiliki kemampuan terbaik untuk memantapkan agregat tanah hingga sangat mantap sekali dengan atau tanpa penambahan bahan organik pada periode 60 hari pengamatan.</p><p><em><strong>Abstract</strong></em>. This study aimed to analyze the aggregate stability of soil with sdifferent treatments of aggregate-stabilizing bacteria and organic matter (compost made of mixture of 90% Cyperus pilosus Vahl grass biomass and 10% cattle manure) at different incubation period. Treatments consisted of control, combination of three different isolate with three different composition of organic matter (0%, 0.5%, and 1%). The results showed that the application of aggregate-stabilyzing bacteria to loamy sand soil and organic matter causes a higher bacteria population than without both applications. Klebsiella sp. LW-13 combined with 1% organic matter and Bukholderia anthina MYSP113 which was combined with various levels of organic matter (0 to 1%) showed high aggregation at observation of 60 days after application. The exopolysaccharide produced by bacteria binds soil particles and forms soil aggregation. The use of Bukholderia anthina MYSP113 bacteria is considered to be efficient in its utilization to stabilize soil aggregates because it has the best ability to stabilize soil aggregates to be highly stable with or without the addition of organic matter in the 60-day observation period.</p><p> </p>


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 259-267 ◽  
Author(s):  
Mark M. Loux ◽  
Rex A. Liebl ◽  
Fred W. Slife

The availability and persistence of imazaquin, imazethapyr, and clomazone were studied in a Cisne silt loam (1.3% organic matter) and a Drummer silty clay loam (5.8% organic matter). Availability of all three herbicides to bioassay species was greater in the Cisne soil than in the Drummer soil. Corn root growth was more sensitive to imazaquin and imazethapyr than corn shoot growth. Shoot and root growth of wheat was inhbited by similar clomazone concentrations. In field experiments conducted in 1984, 1985, and 1986, all three herbicides were more persistent in the Drummer silty clay loam than in the Cisne silt loam. Clomazone and imazethapyr were detected by liquid or gas chromatographic analysis in the Drummer soil 3 yr following application. Crop injury occurred 5 months after application of imazaquin and clomazone to the Drummer soil. In the Cisne soil, only imazethapyr caused crop injury 5 months after application. Herbicide residues found below 7.5 cm were greater in the Drummer soil than in the Cisne soil.


2020 ◽  
Author(s):  
Nives Zambon ◽  
Lisbeth Lolk Johannsen ◽  
Peter Strauss ◽  
Tomáš Dostál ◽  
David Zumr ◽  
...  

&lt;p&gt;Soil erosion by water is globally the main soil degradation process which leaves serious consequences on agricultural land and water aquifers. Splash erosion is the initial stage of soil erosion by water, resulting from the destructive force of rain drops acting on soil surface aggregates. Splash erosion studies conducted in laboratories use rainfall simulators. They produce artificial rainfall which can vary according to type of the rainfall simulator. In this study the aim was to quantify the differences in splash erosion rates affected by rainfall produced by two different rainfall simulators on two silt loam and one loamy sand soil. Splash erosion was measured using modified Morgan splash cups and the rainfall simulators were equipped with four VeeJet or one FullJet nozzle. The soil samples placed under simulated rainfall were exposed to intensity range from 28 to 54 mm h&lt;sup&gt;-1&lt;/sup&gt; and from 35 to 81 mm h&lt;sup&gt;-1&lt;/sup&gt;, depending on the rainfall simulator. Rainfall characteristics such as drop size and velocity distribution were measured with an optical laser disdrometer Weather Sensor OTT Parsivel Version 1 (Parsivel) by OTT Messtechnik. Rainfall simulator with VeeJet nozzles produced smaller drops but higher drop velocity which resulted in higher kinetic energy per mm of rainfall compared to rainfall simulator with FullJet nozzles. For the same intensity rate measured kinetic energy under the rainfall simulator with VeeJet nozzles was 45% higher than rainfall kinetic energy from rainfall simulator with FullJet nozzles. Accordingly, the average splash erosion rate was 45 and 59% higher under the rainfall simulator with VeeJet nozzles for one silt loam and loamy sand soil, respectively. Splash erosion was found to be a linear or power function of the rainfall kinetic energy, depending on rainfall simulator. The obtained results highlight the sensitivity of the splash erosion process to rainfall characteristics produced by different rainfall simulators. The heterogeneity of rainfall characteristics between different types of rainfall simulators makes a direct comparison of results obtained from similar erosion studies difficult. Further experiments including comparison between more rainfall simulators could define influencing rainfall parameters on splash erosion under controlled laboratory conditions.&lt;/p&gt;


2021 ◽  
Author(s):  
Iqbal Ahmad ◽  
Bushra Khan ◽  
Nida Gul ◽  
Muhammad Khan ◽  
Javaid Iqbal ◽  
...  

Abstract Lead (Pb) contamination in soil and subsequent transport in groundwater poses severe threats to the food safety and human health. In current study, the effects of soil organic matter on sorption behavior of Pb onto six agricultural soils were investigated by batch sorption experiments and microscopic characterization. Results indicated that Pb sorption onto agricultural soils was dominated by the soil organic matter content and soil texture. The decrease of organic matter content reduced the sorption capacity of Pb onto agricultural soils. Based on soil texture, the Pb sorption was highest in clay soil and lowest in silt type of soil. The overall Pb sorption was in the order of clay > clay loam > silty clay loam ≈ loam > silt loam > silt. The sorption isotherms of measured aqueous and soil phase Pb concentrations were fit well with the linear sorption model. The organic carbon normalized partition coefficients (Log KOC) ranged from 2.90 to 2.99. Linear partition coefficient (Kd) values were positively correlated with the soil properties, such as clay (R2 =0.90), OC (R2 =0.94) and pH (R2 = 0.45); however, weak correlation was found between Kd and soil sand contents (R2 = 0.12). The leachability model showed potential risk of Pb leaching from silt soil with lowest organic matter content. The findings are of significant importance for understanding potential threats of Pb to the soil ecosystem, groundwater, plants, and humans.


Sign in / Sign up

Export Citation Format

Share Document