scholarly journals Mechanical properties of steel slag replaced mineral aggregate for road base/sub-base application based Vietnam and Japan standard

Author(s):  
Dang Tung Dang ◽  
Manh Tuan Nguyen ◽  
Tan Phong Nguyen ◽  
Tomoo Isawa ◽  
Yasutaka Ta ◽  
...  

AbstractSteelmaking slag is one of the most massive industrial by-products generated during steelmaking processes. This paper presents the current steelmaking slag production status and its potential to use as mineral aggregates in base/sub-base layer of road pavement. The mechanical properties of steelmaking slag were confirmed by the test method specified in Vietnam specification. The volume stability test of the slag was conducted based on JIS A 5015-2018 (Japanese Industrial Standard: Iron and steel slag for road construction). From the results, it was confirmed that steelmaking slag can satisfy all the mechanical requirements specified in Vietnam specification and the requirements regarding stability specified in JIS A 5015-2018. In addition, it was found that the elastic modulus of steelmaking slag applied as a base or sub-base layer in pavement was higher than that of the conventional graded aggregate made from mineral aggregate. Therefore, the thickness of pavement can be reduced by using steelmaking slag, and the construction cost can be lower.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 563
Author(s):  
Łukasz Skotnicki ◽  
Jarosław Kuźniewski ◽  
Antoni Szydło

The reduction in natural resources and aspects of environmental protection necessitate alternative uses of waste materials in the area of construction. Recycling is also observed in road construction where mineral–cement emulsion (MCE) mixtures are applied. The MCE mix is a conglomerate that can be used to make the base layer in road pavement structures. MCE mixes contain reclaimed asphalt from old, degraded road surfaces, aggregate improving the gradation, asphalt emulsion, and cement as a binder. The use of these ingredients, especially cement, can cause shrinkage and cracks in road layers. The article presents selected issues related to the problem of cracking in MCE mixtures. The authors of the study focused on reducing the cracking phenomenon in MCE mixes by using an innovative cement binder with recycled materials. The innovative cement binder based on dusty by-products from cement plants also contributes to the optimization of the recycling process in road surfaces. The research was carried out in the field of stiffness, fatigue life, crack resistance, and shrinkage analysis of mineral–cement emulsion mixes. It was found that it was possible to reduce the stiffness and the cracking in MCE mixes. The use of innovative binders will positively affect the durability of road pavements.


2019 ◽  
Vol 944 ◽  
pp. 1163-1171
Author(s):  
Ying Xu ◽  
Qiao Ling Wang ◽  
Chen Guang Hu ◽  
Shan Shan Yang

The steel slag is not widely or extensively used because of its poor volume stability and low cementitious activity. In this paper, the solid waste fly ash, quicklime and slag discharged from iron and steel enterprises are used as conditioning components in the experiment. In order to improve the cementitious activity and volume stability of steel slag, the high temperature reconstruction experiment of steel slag was completed. The effects of C/S (2.50~3.14), S/A (4.5~17. 81) on the cementitious activity and volume stability of reconstructed steel slag were investigated by means of the tests of compressive strength, scanning electron microscope, X-ray diffraction, lithofacies test, stability test and so on. The results showed that the cementitious activity and volume stability of the reconstructed steel slag were improved in the higher C/S or lower S/A. The cementitious activity and volume stability of the reconstructed steel slag were improved with the increase of CaF2 content. By analyzing the cementitious activity and volume stability of the reconstructed steel slag, the optimum technological parameters are obtained as follows: C/S is 2.70 , S/A is 5.78, the content of CaF2 is 4%.


2021 ◽  
Vol XXVIII (2) ◽  
pp. 120-124
Author(s):  
Ion Chiricuta ◽  

This work facilitates the application of modern technologies for road construction, by using steel slag instead of natural stone aggregates. This procedure will result in a significant decrease in the cost of works (slag, being an industrial waste, is much cheaper than natural aggregate). In the same time, the use of slag aggregates can result in protection of the environment, by eliminating slag storage spaces and by preserving the natural environment (extraction of natural aggregates may disturb groundwater and intensify erosion etc). Marshall stability, flow index and bulk density were determined for both kinds of aggregates, in order to find if the steel slag can safely replace the natural aggregates. By comparing the experimental results obtained for the two kinds of aggregates, it was confirmed the possibility of successfully using of steel slag as a substitute for natural aggregates in the base layer of a road structure.


2020 ◽  
Vol 10 (19) ◽  
pp. 6699
Author(s):  
So Yeong Choi ◽  
Eun Ik Yang

In this study, the characteristics of the alkali-silica reaction (ASR) expansion of steel slag itself, mortar bars, and concrete specimens using steel slag as aggregate are individually investigated by the expansion test method, to determine if steel slag aggregate in concrete can provide volume stability. The results show that when steel slag is aged in water for one month, its self-expansibility is below the permitted limit of 1.5% according to the JIS A 5015 standard. The ASR test results show that the ASR expansion of the mortar bars continuously increased with the increase in the test period. However, all mortar bars were below the permitted limit of 0.1% after 14 days according to the ASTM C 1260 standard. In contrast, the ASR expansion of concrete specimens was above the criteria prescribed by the ASTM C 1293 standard. From the results, the expansion of concrete specimens could not be controlled within the permitted limit by the ASTM 1293 criteria, even if the expansivity of steel slag did not exceed the criteria. Meanwhile, considering the crack propagation patterns of the concrete specimens, the cracks due to ASR expansion developed and connected even when the expansion was below the permitted limit. Besides, when mineral admixtures were used as the binder in the concrete specimens, there were discrepancies in the results between the expansion rate and the crack properties, such as maximum length and total crack length. Therefore, to accurately determine the change in volume due to ASR expansion in concrete using steel slag as coarse aggregate, it is necessary to check the crack patterns in addition to evaluating the expansion rate.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Erika Furlani ◽  
Stefano Maschio

The paper reports on some experimental results obtained from the production of mortars prepared using a commercial cement, coarse steelmaking slag, superplasticizer, and water. The behaviour of this reference composition was compared to that of some others containing further additives in order to investigate materials compressive strength after long time ageing. It has been demonstrated that an optimized water/cement ratio coupled with slag particles of size lower than 2.5 mm and proper protocol of preparation leads to the production of materials with good mechanical properties after 28, 90, and 180 days of ageing. The resulting materials therefore appeared as good candidates for civil engineering applications. However, the present research also demonstrates that the mortar samples of all of the compositions prepared suffer from decay and compressive strength decrease after long time ageing in water. In the present paper the results are explained taking account of materials residual porosity and alkali silica reaction which occurs in the samples.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 345
Author(s):  
Giulio Dondi ◽  
Francesco Mazzotta ◽  
Claudio Lantieri ◽  
Federico Cuppi ◽  
Valeria Vignali ◽  
...  

Today the use of Construction and Demolition Materials (CDM) can be considered as a suitable solution for the construction or the rehabilitation of road pavements. In this context, it is central to minimizing waste production, favoring the reuse through new production cycles to replace virgin natural raw materials. As illustrated in this study, steel slag has mechanical properties that justify its use as aggregate in the manufacture of bituminous mixes. In road construction, their use is focused on the substitution of fine aggregate and filler in bituminous mixtures. Mechanical characterizations, Marshall stability and indirect tensile resilient modulus (ITSM) tests were used to evaluate the laboratory performance of the mixtures. The research aims are to provide the use of these materials for the construction of the entire road pavement structure; in this study authors used these materials both in the characterization of cementitious layers and in those with bituminous conglomerate. In both cases, the use of steel slag has favored an increase of stiffness in the mixtures.


2021 ◽  
Vol 1 (2) ◽  
pp. 87-92
Author(s):  
Emil Adly

Road pavement near coastal area has greater chance for seawater immersion. Along the road of Pantai Utara especially on Jalan Kaligawe Raya, Semarang, Jawa Tengah, tidal seawater flood often occurs. Road pavement that is immersed by water is potentially damaged since water is one of the causing factors of damage in road pavement. Recurring weight also will decrease the design life and the road degrades faster. The buildup of unused waste from steel factory can be an alternative material for modified asphalt mix. The test result of 6, 12, and 24 hours seawater immersion indicated poor marshall characteristic value marked by the decrease of density value, VFA (Void Filled Asphalt), stability, and MQ (Marshall Quotient), and indicated the increase in VIM (Void In the Mix), VMA (Void in Mineral Aggregate), and flow.


Author(s):  
Volodymyr Karedin ◽  
Nadiya Pavlenko

CREDO RADON UA software provides an automated calculation of the strength of the pavement structures of non-rigid and rigid types, as well as the calculation of the strengthening of existing structures. In the article, one can see the main features and functionality of the CREDO RADON UA software, the main points in the calculations according to the new regulations. Information support of the design process includes necessary databases, informational and helping materials that make up the full support of the pavement design process. The concept of CREDO RADON UA 1.0 software is made on the use of elasticity theory methods in calculations of initial information models of pavements. Performing optimization calculations, the roadwear in CREDO RADON UA is designed in such a way that no unacceptable residual deformation occurs under the influence of short-term dynamic or static loading in the working layer of the earth bed and in the structural layers during the lifetime of the structure. The calculation algorithms were made in accordance with the current regulatory documents of Ukraine. CREDO RADON UA software allows user to create information bases on road construction materials and vehicles as part of the traffic flow for calculations. The presented system of automated modeling makes it easier for the customer to control the quality of design solutions, to reasonably assign designs to layers of reinforcement, to quickly make comparisons of calculations of different designs for the optimal use of allocated funds. Prospects for further improvement of the program should be the results of theoretical and experimental studies on filling the databases, which are used as information support for automated design of road structures. Keywords: CREDO RADON UA, road, computer-aided design, repair project, road pavement, strengthening, construction, rigid pavement, elasticity module, a transport stream, calculation method, information support, dynamic or static loading.


Sign in / Sign up

Export Citation Format

Share Document