scholarly journals Exercise and oxidative stress: Sources of free radicals and their impact on antioxidant systems

AGE ◽  
1997 ◽  
Vol 20 (2) ◽  
pp. 91-106 ◽  
Author(s):  
Li Li Ji ◽  
Steve Leichtweis
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. Garrido ◽  
M. P. Terrón ◽  
A. B. Rodríguez

Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases.


2019 ◽  
Vol 22 (7) ◽  
pp. 496-501
Author(s):  
Fatemeh Ahmadi-Motamayel ◽  
Parisa Falsafi ◽  
Hamidreza Abolsamadi ◽  
Mohammad T. Goodarzi ◽  
Jalal Poorolajal

Background: Cigarette smoke free radicals can cause cellular damage and different diseases. All the body fluids have antioxidants which protect against free radicals. Objective: The aim of this study was to evaluate salivary total antioxidant capacity and peroxidase, uric acid and malondialdehyde levels in smokers and a nonsmoking control group. Methods: Unstimulated saliva was collected from 510 males. A total of 259 subjects were current smokers and 251 were non-smokers. The levels of salivary total antioxidant capacity, uric acid, peroxidase and malondialdehyde were measured using standard procedures. Data were analyzed with t test and ANOVA. Results: The smokers were younger and dental hygiene index was higher than healthy nonsmoking controls. The mean total antioxidant capacity in smokers and nonsmokers was 0.13±0.07 and 0.21±011, respectively (P=0.001). Smokers had significantly lower peroxidase and uric acid levels than healthy controls. In addition, the mean malondialdehyde levels in the smokers and nonsmokers were 4.55 ±2.61 and 2.79 ±2.21, respectively (P=0.001). Conclusion: Cigarette smoke produces free radical and oxidative stress, causing many side effects. Salivary antioxidant levels decreased and malondialdehyde levels increased in smokers, indicating the high oxidative stress among smokers compared to nonsmokers. Cigarette smoke had deleterious effects on main salivary antioxidants levels.


1995 ◽  
Vol 6 (3) ◽  
pp. 221-227 ◽  
Author(s):  
G. Rotilio ◽  
L. Rossi ◽  
A. de Martino ◽  
Ana Maria da Costa Ferreira ◽  
M.R. Ciriolo

Author(s):  
Fasna K. A. ◽  
Geetha N. ◽  
Jean Maliekkal

Background: Ageing is characterized by a gradual decline in body functions and decreased ability to maintain homeostasis. The free radical theory of ageing proposed by Harman D states that ageing is a result of cumulative damage incurred by free radical reactions. Free radicals are highly reactive molecular species with unpaired electrons; generated in the body by several physiological processes. Prime target to free radical attack are the polyunsaturated fatty acids of cell membranes causing lipid peroxidation. The free radicals are neutralized by the exogenous and endogenous antioxidant systems. Oxidative stress occurs when large number of free radicals are produced or the antioxidant activity is impaired. The present study is focused to find out the role of oxidative stress in ageing.Methods: A cross sectional observational study was undertaken to assess the oxidative stress in ageing; by determining the levels of lipid peroxidation product- malondialdehyde (MDA), the antioxidants- superoxide dismutase (SOD) and ceruloplasmin in various age groups. 150 healthy subjects were selected randomly and categorised into three different age groups of 20-30 years, 40-59 years and 60-90 years; with 50 subjects in each group. Results were expressed as mean ± standard deviation.Results: a significant elevation in serum MDA level and a decline in SOD were observed in 40-59 years and 60-90 years age groups. However, an elevated ceruloplasmin level was found in the above age groups.Conclusions: Aforementioned observations are suggestive of an association between oxidative stress and the progression of ageing process.


2019 ◽  
Vol 20 (S1) ◽  
Author(s):  
Camila F. A. Giordani ◽  
Sarah Campanharo ◽  
Nathalie R. Wingert ◽  
Lívia M. Bueno ◽  
Joanna W. Manoel ◽  
...  

Abstract Background The presence of impurities in some drugs may compromise the safety and efficacy of the patient’s treatment. Therefore, establishing of the biological safety of the impurities is essential. Diabetic patients are predisposed to tissue damage due to an increased oxidative stress process; and drug impurities may contribute to these toxic effects. In this context, the aim of this work was to study the toxicity, in 3 T3 cells, of the antidiabetic agents sitagliptin, vildagliptin, and their two main impurities of synthesis (S1 and S2; V1 and V2, respectively). Methods MTT reduction and neutral red uptake assays were performed in cytotoxicity tests. In addition, DNA damage (measured by comet assay), intracellular free radicals (by DCF), NO production, and mitochondrial membrane potential (ΔψM) were evaluated. Results Cytotoxicity was observed for impurity V2. Free radicals generation was found at 1000 μM of sitagliptin and 10 μM of both vildagliptin impurities (V1 and V2). A decrease in NO production was observed for all vildagliptin concentrations. No alterations were observed in ΔψM or DNA damage at the tested concentrations. Conclusions This study demonstrated that the presence of impurities might increase the cytotoxicity and oxidative stress of the pharmaceutical formulations at the concentrations studied.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Dehai Xian ◽  
Jing Song ◽  
Lingyu Yang ◽  
Xia Xiong ◽  
Rui Lai ◽  
...  

Angiogenesis is the process of new vessel formation, which sprouts from preexisting vessels. This process is highly complex and primarily involves several key steps, including stimulation of endothelial cells by growth factors, degradation of the extracellular matrix by proteolytic enzymes, migration and proliferation of endothelial cells, and capillary tube formation. Currently, it is considered that multiple cytokines play a vital role in this process, which consist of proangiogenic factors (e.g., vascular endothelial growth factor, fibroblast growth factors, and angiopoietins) and antiangiogenic factors (e.g., endostatin, thrombospondin, and angiostatin). Angiogenesis is essential for most physiological events, such as body growth and development, tissue repair, and wound healing. However, uncontrolled neovascularization may contribute to angiogenic disorders. In physiological conditions, the above promoters and inhibitors function in a coordinated way to induce and sustain angiogenesis within a limited period of time. Conversely, the imbalance between proangiogenic and antiangiogenic factors could cause pathological angiogenesis and trigger several diseases. With insights into the molecular mechanisms of angiogenesis, increasing reports have shown that a close relationship exists between angiogenesis and oxidative stress (OS) in both physiological and pathological conditions. OS, an imbalance between prooxidant and antioxidant systems, is a cause and consequence of many vascular complains and serves as one of the biomarkers for these diseases. Furthermore, emerging evidence supports that OS and angiogenesis play vital roles in many dermatoses, such as psoriasis, atopic dermatitis, and skin tumor. This review summarizes recent findings on the role of OS as a trigger of angiogenesis in skin disorders, highlights newly identified mechanisms, and introduces the antiangiogenic and antioxidant therapeutic strategies.


2004 ◽  
pp. 203-214 ◽  
Author(s):  
Jennifer M. Mach ◽  
Jean T. Greenberg

2018 ◽  
Vol 92 ◽  
pp. 8-17 ◽  
Author(s):  
Piotr Żukowski ◽  
Mateusz Maciejczyk ◽  
Danuta Waszkiel

Sign in / Sign up

Export Citation Format

Share Document