Effects of the radial force on the static contact properties and sealing performance of a radial lip seal

2014 ◽  
Vol 57 (6) ◽  
pp. 1175-1182 ◽  
Author(s):  
XiaoHong Jia ◽  
Fei Guo ◽  
Le Huang ◽  
LongKe Wang ◽  
Zhi Gao ◽  
...  
2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Peng Zhang ◽  
Kwang-Hee Lee ◽  
Chul-Hee Lee

A magnetorheological fluid (MRF) is one of many smart materials that can be changed their rheological properties. The stiffness and damping characteristics of MRF can be changed when a magnetic field is applied. This technology has been successfully employed in various low and high volume applications, such as dampers, clutches, and active bearings, which are already in the market or are approaching production. As a result, the sealing performance of MRF has become increasingly important. In this study, the wear properties of seals with MRFs were evaluated by a rotary-type lip seal wear tester. The test was performed with and without a magnetic field. The leakage time was monitored during the tests in typical engine oil conditions. The results showed that the wear resistance of the seal with MRF was decreased under the magnetic field.


1993 ◽  
Vol 115 (4) ◽  
pp. 620-624 ◽  
Author(s):  
K. To̸nder

The work presented previously by To̸nder and Salant (1992) is extended and generalized. In that work it was shown that the fine, axially oriented striations found on some lip-seals, under certain conditions, could lead to the total suppression of leakage through a fully lubricated seal. In the present work the behavior of the lubricant annulus is studied, as are the conditions required for leakage suppression. If the latter are met, it is shown that when a certain parameter—here called the seal number—is increased, the lubricant annulus width will shrink. This will lead to a reduction of the friction force. It is further shown that the striated roughness will also generate a radial force or load capacity. This effect does not involve local cavitation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huifang Dong ◽  
Jian Hu

The hydrodynamic theoretical lubrication model of the friction pair between the rotary shaft and the lip seal under the state of full film lubrication was established in this paper. The Reynolds equation was solved by using the finite difference method, and the influence of the viscosity-temperature characteristics of the lubricant was taken into account in the solution process. The distribution of the film thickness and the hydrodynamic pressure in the sealing area was obtained. At the same time, the bench test was carried out and the correctness of the model was verified by comparing the simulation results and test results of reverse pumping rate and friction torque under different rotational speed of the shaft. The microasperity of the lip surface is a necessary condition for achieving the sealing effect. Therefore, the influences of the contact load of the seal and the root mean square deviation of the lip surface on the sealing performance and frictional property were analyzed by using the theoretical model. The analysis results show that the sealing performance and frictional property can be changed by changing the contact load and surface roughness of the lip, but a single increase in the influence of a certain factor cannot achieve good results, and comprehensive consideration is required in product design.


2002 ◽  
Vol 125 (1) ◽  
pp. 60-69 ◽  
Author(s):  
George K. Nikas

A numerical model was developed to study the sealing performance of rectangular elastomeric seals for reciprocating piston rods used in linear hydraulic actuators. The model takes into account a large number of parameters and has been applied in the study of seals for aircraft actuation assemblies in a broad range of temperatures (−55°C to +135°C) and sealed pressures (1–50 MPa or more). The model is used to calculate the contact pressures and film thickness maps as well as the leakage rates and friction for the dynamic or static contact between a seal and a reciprocating piston rod, aiming at the minimization of both the leakage and the wear of the seals.


2020 ◽  
Vol 103 (1) ◽  
pp. 003685041988190
Author(s):  
Xiaokai Huang ◽  
Shouwen Liu ◽  
Chao Zhang

Rotary lip seal is used in various applications where the rotation shaft needs to be sealed, such as hydraulic pumps, fuel pumps, camshafts, crankshafts, and so on. Many thermal elastohydrodynamic lubrication models of rotary lip seal have been introduced, and most of these models neglect the asperity contact. This article proposes a mixed thermal elastohydrodynamic lubrication model of rotary lip seal, in which the microstructure of sealing lip surface, influence of temperature on fluid viscosity, and deformation of lip surface, as well as the asperity contact, are taken into consideration. Simulation study is carried out, and the results show that the asperity contact should not be neglected for analyzing the sealing performance of the rotary lip seal. The influence of speed on the sealing performance is also analyzed based on the proposed model.


Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 99 ◽  
Author(s):  
Emilia Kozuch ◽  
Petros Nomikos ◽  
Ramin Rahmani ◽  
Nick Morris ◽  
Homer Rahnejat

Reduction of leakage from the shaft–radial lip seal conjunction is critical in ensuring enduring performance of entire lubrication system. This paper investigates leakage from three types of shaft surfaces, finished using different manufacturing processes. The measurement of surface topography is conducted in order to determine the pertinent roughness parameters which correspond to the observed sealing performance in real practical applications. It is found that the skewness of the surface topography correlates well with the anecdotal leakage failure rate. To quantify this association, a hydrodynamic model, accounting for shaft roughness in a deterministic manner is developed. The results from the numerical analyses confirm that the lubricant mass flow rate is reduced in the case of negatively skewed surface height distributions, when compared with the positively skewed profiles.


1998 ◽  
Vol 120 (3) ◽  
pp. 476-481 ◽  
Author(s):  
Lou Liming ◽  
Kazutoshi Yamamoto ◽  
Ken Ikeuchi

Based upon EHD theory, the sealing performance of a rotary shaft helix lip seal has been analyzed numerically using a complete hydrodynamic lubrication model. In order to verify the analytical method, several experiments are carried out under different operating conditions. After verification by the experimental results, the analytical method is used to calculate the sealing limit and the optimum seal radial load. The effects of the boundary pressure of sump side upon the pumping rate of a seal are discussed.


2015 ◽  
Vol 9 (1) ◽  
pp. 475-482 ◽  
Author(s):  
Xuepeng Cao ◽  
Cuihong Zhang ◽  
Bo Zou ◽  
Lei Li

In order to improve the environmental adaptability and sealing performance of the rotating seal, the principles and failure mechanisms of the rotating seal in ambient pressure in deep-sea is researched. It is proposed that the excessive friction caused by the ambient pressure and the magnitude of interference is the main reason for rotating seal failure. To reduce friction effect, a combined lip seal is designed, whose structure consists of a rotating seal made of polytetrafluoroethylene (PTFE) and an O-shaped fastening ring. The finite element analysis results indicate that the contact pressure in sealing surface increases with the growing magnitude of interference, but decreases when it exceeds the value 0.65mm. A suitable range (0.5×10 m ~0.6×10m) for the magnitude of interference is concluded for this combined seal. Finally, the designed PTFE rotating seal is tested in a deep-sea imitating hull, and the experimental results show that the seal is able to work reliably without leaking for more than 10 hours in the ambient pressure less than 30MPa, and verifies the design of the rotating seal is rational, which displays that the seal is available for the special requirement of deep-sea environment in short periods.


2020 ◽  
Vol 25 (2) ◽  
pp. 11-21
Author(s):  
Y. Bahi ◽  
M. El Gadari ◽  
M. Rahmoune

AbstractIt is commonly known that the sealing performance of dynamic seals is significantly influenced by the surface finish. To reduce friction effect and leakage ratio, new generations of grooved lip or shaft have emerged, but only two computational models were performed up to now with a textured elastomeric lip: spiral groove in the axial direction or micro-cavities according to the circumferential direction. However, if the numerical results have confirmed the slight effect of the grooved lip on the rotary lip seal performances, it seems relevant to investigate the influence of such grooves on the reciprocating hydraulic rod seal behavior.Thus, the scope of this work is to perform a parametric study of the grooved lip throughout a one-dimensional elastohydrodynamic model by taking into account the elasticity of the lip and the shaft roughness.After confirming the validity of the current model, numerical simulations have been performed and compared with experiments. The effect of lip grooves on the hydraulic rod seal behavior in outstroke and instroke shaft motion has been underlined. Thereby, it is shown that the leakage and the average film thickness are sensible to both the depth and the density of the lip groove. Additionally, a slight effect of the pattern shape is observed on the friction force.


Sign in / Sign up

Export Citation Format

Share Document