scholarly journals Modular crawling robots using soft pneumatic actuators

Author(s):  
Nianfeng Wang ◽  
Bicheng Chen ◽  
Xiandong Ge ◽  
Xianmin Zhang ◽  
Wenbin Wang

AbstractCrawling robots have elicited much attention in recent years due to their stable and efficient locomotion. In this work, several crawling robots are developed using two types of soft pneumatic actuators (SPAs), namely, an axial elongation SPA and a dual bending SPA. By constraining the deformation of the elastomeric chamber, the SPAs realize their prescribed motions, and the deformations subjected to pressures are characterized with numerical models. Experiments are performed for verification, and the results show good agreement. The SPAs are fabricated by casting and developed into crawling robots with 3D-printing connectors. Control schemes are presented, and crawling tests are performed. The speeds predicted by the numerical models agree well with the speeds in the experiments.

2021 ◽  
pp. 1-14
Author(s):  
Nianfeng Wang ◽  
Bicheng Chen ◽  
Xiandong Ge ◽  
Xianmin Zhang ◽  
Wei Chen

Abstract Recently, soft pneumatic actuators (SPAs) have drawn increasing attention due to their ease of fabrication, high customizability and innately softness. Inspired by modular design, two kinds of SPAs including an axial elongation soft pneumatic actuator (aeSPA) and a radial expansion soft pneumatic actuator (reSPA) are proposed in this paper, followed by their modeling, fabrication, and application in locomotion robots. The relationships between pressure and displacement of these SPAs are deduced based on the Yeoh model and the principle of virtual work, which has a good agreement with experimental results. Five modular worm-like crawling robots are fabricated by assembling the aeSPAs and reSPAs in different morphology, and crawling tests are performed under different conditions to show the adaptivity of robots.


Author(s):  
Bahaa Shaqour ◽  
Mohammad Abuabiah ◽  
Salameh Abdel-Fattah ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
...  

AbstractAdditive manufacturing is a promising tool that has proved its value in various applications. Among its technologies, the fused filament fabrication 3D printing technique stands out with its potential to serve a wide variety of applications, ranging from simple educational purposes to industrial and medical applications. However, as many materials and composites can be utilized for this technique, the processability of these materials can be a limiting factor for producing products with the required quality and properties. Over the past few years, many researchers have attempted to better understand the melt extrusion process during 3D printing. Moreover, other research groups have focused on optimizing the process by adjusting the process parameters. These attempts were conducted using different methods, including proposing analytical models, establishing numerical models, or experimental techniques. This review highlights the most relevant work from recent years on fused filament fabrication 3D printing and discusses the future perspectives of this 3D printing technology.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Yinli Xiao ◽  
Zupeng Wang ◽  
Zhengxin Lai ◽  
Wenyan Song

The development of high-performance aeroengine combustion chambers strongly depends on the accuracy and reliability of efficient numerical models. In the present work, a reacting solver with a steady laminar flamelet model and spray model has been developed in OpenFOAM and the solver details are presented. The solver is firstly validated by Sandia/ETH-Zurich flames. Furthermore, it is used to simulate nonpremixed kerosene/air spray combustion in an aeroengine combustion chamber with the RANS method. A comparison with available experimental data shows good agreement and validates the capability of the new developed solver in OpenFOAM.


2010 ◽  
Vol 37 (4) ◽  
pp. 600-610 ◽  
Author(s):  
Vladan Kuzmanovic ◽  
Ljubodrag Savic ◽  
John Stefanakos

This paper presents two-dimensional (2D) and three-dimensional (3D) numerical models for unsteady phased thermal analysis of RCC dams. The time evolution of a thermal field has been modeled using the actual dam shape, RCC technology and the adequate description of material properties. Model calibration and verification has been done based on the field investigations of the Platanovryssi dam, the highest RCC dam in Europe. The results of a long-term thermal analysis, with actual initial and boundary conditions, have shown a good agreement with the observed temperatures. The influence of relevant parameters on the thermal field of RCC dams has been analyzed. It is concluded that the 2D model is appropriate for the thermal phased analysis, and that the boundary conditions and the mixture properties are the most influential on the RCC dam thermal behavior.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1432
Author(s):  
Lev Zakhvatkin ◽  
Alex Schechter ◽  
Eilam Buri ◽  
Idit Avrahami

During aerial missions of fuel-cell (FC) powered drones, the option of FC edge cooling may improve FC performance and durability. Here we describe an edge cooling approach for fixed-wing FC-powered drones by removing FC heat using the ambient air during flight. A set of experiments in a wind tunnel and numerical simulations were performed to examine the efficiency of FC edge cooling at various flight altitudes and cruise speeds. The experiments were used to validate the numerical model and prove the feasibility of the proposed method. The first simulation duplicated the geometry of the experimental setup and boundary conditions. The calculated temperatures of the stack were in good agreement with those of the experiments (within ±2 °C error). After validation, numerical models of a drone’s fuselage in ambient air with different radiator locations and at different flight speeds (10–30 m/s) and altitudes (up to 5 km) were examined. It was concluded that onboard FC edge cooling by ambient air may be applicable for velocities higher than 10 m/s. Despite the low pressure, density, and Cp of air at high altitudes, heat removal is significantly increased with altitude at all power and velocity conditions due to lower air temperature.


2020 ◽  
Author(s):  
Simone Mancini ◽  
Koen Boorsma ◽  
Marco Caboni ◽  
Marion Cormier ◽  
Thorsten Lutz ◽  
...  

Abstract. The disruptive potential of floating wind turbines has attracted the interest of both industry and scientific community. Lacking a rigid foundation, such machines are subject to large displacements whose impact on the aerodynamic performance is not yet fully acknowledged. In this work, the unsteady aerodynamic response to an harmonic surge motion of a scaled version of the DTU10MW turbine is investigated in detail. The imposed displacements have been chosen representative of typical platform motions. The results of different numerical models are validated against high fidelity wind tunnel tests specifically focused on the aerodynamics. Also a linear analytical model, relying on the quasi-steady assumption, is presented as a theoretical reference. The unsteady responses are shown to be dominated by the first surge harmonic and a frequency domain characterization, mostly focused on the thrust oscillation, is conducted involving aerodynamic damping and mass parameters. A very good agreement among codes, experiments and quasi-steady theory has been found clarifying some literature doubts. A convenient way to describe the unsteady results in non-dimensional form is proposed, hopefully serving as reference for future work.


2019 ◽  
Vol 79 (9) ◽  
pp. 1717-1726 ◽  
Author(s):  
Svenja Kemper ◽  
Andreas Schlenkhoff

Abstract Due to an increasing number of heavy rainfall events, the managing of urban flooding requires new design approaches in urban drainage engineering. With bidirectional coupled numerical models the surface runoff, the underground sewer flow and the interaction processes between both systems can be calculated. Most of the numerical models use a weir equation to calculate the surface to sewer flow with unsurcharged flow conditions, but uncertainties still exist in the representation of the real flow conditions. Street inlets, existing in different types, are the connecting elements between the surface and the underground system. In the present study, an empirical formula was developed based on physical model test runs to estimate the hydraulic capacity and type-specific efficiency of grate inlets with supercritical surface flow. Influencing hydraulic parameters are water depth and flow velocity upstream of the grate and, in addition, different geometrical parameters are taken into account, such as the grate dimensions or the orientation of the bars (transverse, longitudinal or diagonal). Good agreement between estimated and measured results could be proven with relative deviations less than 1%.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2909 ◽  
Author(s):  
Jiangping Yuan ◽  
Jieni Tian ◽  
Chen Chen ◽  
Guangxue Chen

Color three-dimensional (3D) printing is an advanced 3D printing technique for reproducing colorful 3D objects, but it still has color accuracy issues. Plastic-based color 3D printing is a common color 3D printing process, and most factors affecting its color reproduction quality have been studied from printing materials to parameters in the fixed consecutive layers. In this work, and combined with variable stair thickness, the colored layer sequence in sliced layers of a specific 3D color test chart is deliberately changed to test the effects of colored layer features on its final color reproduction quality. Meanwhile, the colorimetric measurement and image acquisition of printed 3D color test charts are both achieved under standard conditions. Results clearly show that the chromatic aberration values and mean structural similarity (MSSIM) values of color samples have a significant correlation with the colored stair thickness, but both did not display a linear relationship. The correlation trends between colored layer sequence and the above two indexes are more localized to the colored stair thickness. Combined with color structural similarity (SSIM) maps analysis, a comprehensive discussion between colored layer features and color reproduction quality of color 3D printing is presented, providing key insights for developing further accurate numerical models.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Linas Jonušauskas ◽  
Tomas Baravykas ◽  
Dovilė Andrijec ◽  
Tomas Gadišauskas ◽  
Vytautas Purlys

AbstractFemtosecond laser based 3D nanolithography is a powerful tool for fabricating various functional micro- and nano-objects. In this work we present several advances needed to push it from the laboratory level use to the industrial production lines. First, linear stage and galvo-scanners synchronization is employed to produce stitch-free mm-sized structures. Furthermore, it is shown that by varying objective numerical apertures (NA) from 1.4 NA to 0.45 NA, voxel size can be tuned in the range from sub μm to tens of mm, resulting in structuring rates between 1809 μm3/s and 313312 μm3/s at 1 cm/s translation velocity achieved via simultaneous movement of linear stages and scanners. Discovered voxel/throughput scaling peculiarities show good agreement to ones acquired with numerical modeling. Furthermore, support-free 3D printing of complex structures is demonstrated. It is achieved by choosing pre-polymer that is in hard gel form during laser writing and acts as a dissolvable support during manufacturing. All of this is combined to fabricate micromechanical structures. First, 1:40 aspect ratio cantilever and 1.5 mm diameter single-helix spring capable of sustaining extreme deformations for prolonged movement times (up to 10000 deformation cycles) are shown. Then, free-movable highly articulated intertwined micromechanical spider and squids (overall size up to 10 mm) are printed and their movement is tested. The presented results are discussed in the broader sense, touching on the stitching/throughput dilemma and comparing it to the standard microstereolithography. It is shown where multiphoton polymerization can outpace standard stereolithography in terms of throughput while still maintaining superior resolution and higher degree of freedom in terms of printable geometries.


Author(s):  
Yogesh Jaluria

The accuracy and validity of the mathematical and numerical modeling of extruders for polymers and for food are considered in terms of experimental results obtained on typical full-size single and twin-screw extruders. The fluid is treated as non-Newtonian and with strong temperature-dependent properties. The chemical conversion of food during extrusion is also considered. The numerical modeling is employed for steady-state transport, for a range of operating conditions. Following grid-independence studies, the results obtained are first considered in terms of the expected physical behavior of the process, yielding good agreement with observations presented in the literature. The results are then compared with detailed and qualitative experimental results available from previous investigations to evaluate their accuracy. Good agreement with experimental data is obtained, lending strong support to the mathematical and numerical models.


Sign in / Sign up

Export Citation Format

Share Document