The Impact of Esterification Degree and Source of Pectins on Complex Coacervation as a Tool to Mask the Bitterness of Potato Protein Isolates

2020 ◽  
Vol 15 (3) ◽  
pp. 376-385
Author(s):  
Merve Yavuz-Düzgün ◽  
Benjamin Zeeb ◽  
Johannes Dreher ◽  
Beraat Özçelik ◽  
Jochen Weiss
2021 ◽  
Author(s):  
Nicholas Zervoudis ◽  
Allie Obermeyer

The complex coacervation of proteins with other macromolecules has applications in protein encapsulation and delivery and for determining the function of cellular coacervates. Theoretical or empirical predictions for protein coacervates would enable the design of these coacervates with tunable and predictable structure-function relationships; unfortunately, no such theories exist. To help establish predictive models, the impact of protein-specific parameters on complex coacervation were probed in this study. The complex coacervation of sequence-specific, polypeptide-tagged, GFP variants and a strong synthetic polyelectrolyte was used to evaluate the effects of protein charge patterning on phase behavior. Phase portraits for the protein coacervates demonstrated that charge patterning dictates the protein’s binodal phase boundary. Protein concentrations over 100 mg mL<sup>-1</sup> were achieved in the coacervate phase, with concentrations dependent on the polypeptide sequence. In addition to shifting the binodal phase boundary, polypeptide charge patterning provided entropic advantages over isotropically patterned proteins. Together, these results show that modest changes of only a few amino acids alter the coacervation thermodynamics and can be used to tune the phase behavior of polypeptides or proteins of interest.


Author(s):  
Fatma Pir Cakmak ◽  
Saehyun Choi ◽  
McCauley O. Meyer ◽  
Philip C. Bevilacqua ◽  
Christine D. Keating

AbstractMultivalent polyions can undergo complex coacervation, producing membraneless compartments that accumulate ribozymes and enhance catalysis, and offering a mechanism for functional prebiotic compartmentalization in the origins of life. Here, we evaluated the impact of low, prebiotically-relevant polyion multivalency in coacervate performance as functional compartments. As model polyions, we used positively and negatively charged homopeptides with one to 100 residues, and adenosine mono-, di-, and triphosphate nucleotides. Polycation/polyanion pairs were tested for coacervation, and resulting membraneless compartments were analyzed for salt resistance, ability to provide a distinct internal microenvironment (apparent local pH, RNA partitioning), and effect on RNA structure formation. We find that coacervates formed by phase separation of the relatively shorter polyions more effectively generated distinct pH microenvironments, accumulated RNA, and preserved duplexes. Hence, reduced multivalency polyions are not only viable as functional compartments for prebiotic chemistries, but they can offer advantages over higher molecular weight analogues.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatma Pir Cakmak ◽  
Saehyun Choi ◽  
McCauley O. Meyer ◽  
Philip C. Bevilacqua ◽  
Christine D. Keating

AbstractMultivalent polyions can undergo complex coacervation, producing membraneless compartments that accumulate ribozymes and enhance catalysis, and offering a mechanism for functional prebiotic compartmentalization in the origins of life. Here, we evaluate the impact of lower, more prebiotically-relevant, polyion multivalency on the functional performance of coacervates as compartments. Positively and negatively charged homopeptides with 1–100 residues and adenosine mono-, di-, and triphosphate nucleotides are used as model polyions. Polycation/polyanion pairs are tested for coacervation, and resulting membraneless compartments are analyzed for salt resistance, ability to provide a distinct internal microenvironment (apparent local pH, RNA partitioning), and effect on RNA structure formation. We find that coacervates formed by phase separation of the shorter polyions more effectively generated distinct pH microenvironments, accumulated RNA, and preserved duplexes than those formed by longer polyions. Hence, coacervates formed by reduced multivalency polyions are not only viable as functional compartments for prebiotic chemistries, they can outperform higher molecular weight analogues.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 969 ◽  
Author(s):  
Audrey Cosson ◽  
Isabelle Souchon ◽  
Julia Richard ◽  
Nicolas Descamps ◽  
Anne Saint-Eve

The food industry is focused on creating plant-based foods that incorporate pea protein isolates. However, pea protein isolates are often described as having persistent beany, bitter, and astringent notes that can decrease the desirability of the resulting foods and make static sensory profiling difficult. To obtain more realistic descriptions of the sensory experiences associated with this category of products, researchers should consider using temporal methods and multi-intake methods, which allow consumers to evaluate whole food portions. This study aimed to understand better how product composition affected the sensory perception of pea protein-based beverages using three different sensory profiling methods. Particular focus was placed on beany, bitter, and astringent notes. Twelve pea protein-based beverages were formulated; they varied in pea protein type (pellet vs. isolate) and their content of gellan gum, salt, sunflower oil, sugar, and soy lecithin. They were evaluated by 16 trained panelists using three sensory profiling methods: static block profiling, mono-intake temporal dominance of sensations (TDS) profiling, and multi-intake TDS profiling. The static block and mono-intake TDS profiling methods yielded complementary results about the impact of beverage composition on attribute perceptions. Static block profiling revealed that beaniness was mainly affected by gellan gum and oil content and that bitterness and astringency were mainly affected by protein type and gellan gum content. Mono-intake TDS profiling highlighted the dynamics of beaniness and the strong persistence of astringency, and its results suggested that higher gellan gum and salt contents could limit this persistence. Multi-intake TDS profiling found that, throughout the consumption of a full product portion, beaniness and bitterness decreased, indicating an adaptation effect, while fattiness increased, indicating a build-up effect. This study has increased the understanding of how pea protein-based beverages are perceived under conditions that more closely resemble those associated with real-life consumption. It has also revealed how product formulation can reduce bitterness and astringency.


2012 ◽  
Vol 50 (2) ◽  
pp. 373-384 ◽  
Author(s):  
B. Lynch ◽  
R.R. Simon ◽  
F.M. van Otterdijk ◽  
H.H. Emmen ◽  
M.L.F. Giuseppin ◽  
...  

2014 ◽  
Vol 142 ◽  
pp. 373-382 ◽  
Author(s):  
Amanda Waglay ◽  
Salwa Karboune ◽  
Inteaz Alli

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 787
Author(s):  
Mohammadreza Khalesi ◽  
Richard J. FitzGerald

The replacement of animal with plant proteins in human diets has been increasing in recent years. The impact of blending milk protein concentrate (MPC) with protein isolates from soy (SPI), rice (RPI) and pea (PPI) on the in vitro digestibility and antioxidant activity of the resultant blends was investigated. Different plant protein–MPC blends (i.e., SPI–MPC (25:75), RPI–MPC (50:50) and PPI–MPC (25:75)) were analyzed. The lowest protein digestibility corrected amino acid score (PDCAAS) was associated with RPI (0.70), while the blends had PDCAAS values above 1.00 demonstrating the high digestibility of the proteins in the blends studied. An in vitro simulated gastrointestinal digestion was carried out on the samples. The degree of hydrolysis and gel permeation high performance liquid chromatography profiles showed that the SPI–MPC blend was more extensively digested in the gastric phase compared with the two other blends, while the PPI–MPC and RPI–MPC blends were mainly digested during the intestinal phase. The SPI–MPC digested blend had the highest 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity having a half maximal effective concentration (EC50) of 0.10 ± 0.01 mg/mL. The findings show that blends of plant protein with MPC had higher in vitro digestibility and antioxidant activity compared to the individual plant protein isolates.


Sign in / Sign up

Export Citation Format

Share Document