The UV aging properties of maleic anhydride esterified starch/polylactic acid composites

2017 ◽  
Vol 32 (4) ◽  
pp. 971-977 ◽  
Author(s):  
Yingfeng Zuo ◽  
Yiqiang Wu ◽  
Jiyou Gu ◽  
Yanhua Zhang
2021 ◽  
Vol 889 ◽  
pp. 44-49
Author(s):  
Yeng Fong Shih ◽  
Zheng Ting Chen ◽  
Wei Lun Lin ◽  
Po Chun Chiu ◽  
Chin Hsien Chiang ◽  
...  

The purpose of this research is to develop a new type of environmentally friendly container which has thermostatic effect and is biodegradable. This study is based on polylactic acid (PLA) and maleic anhydride grafted polybutylene succinate (MAPBS). Subsequently, the diatomite which adsorbed polyethylene glycol (PEG) was added to prepare a thermostatic biodegradable composite. The addition of MAPBS is to improve the compatibility between PLA and diatomite. In addition, the thermostatic effect, tensile strength, thermal deformation temperature and impact strength of the composite were investigated.


2021 ◽  
Vol 889 ◽  
pp. 21-26
Author(s):  
Yeng Fong Shih ◽  
Jia Yi Xu ◽  
Nian Yi Wu ◽  
Yu Ting Chiu ◽  
Hui Ming Yu ◽  
...  

Bitter tea oil meal (BTOM) is the main waste from the production of bitter tea oil which is squeezed from bitter tea seeds. The purpose of this study is to reuse the BTOM as an additive of the polylactic acid (PLA) to prepare eco-friendly composites. The effects of the addition of BTOM and maleic anhydride grafted polybutylene succinate (MAPBS) on the properties of PLA were investigated. The addition of MAPBS is mainly to increase the toughness of the PLA, and to increase the compatibility between BTOM and PLA. The experimental results show that the compatibility of PLA and BTOM and impact resistance of the composites can be improved by addition of MAPBS. The composite with 5% BTOM and 8% MAPBS exhibited the best tensile strength. In addition, the composite with 5% BTOM and 5% MAPBS has the best impact strength. It was found that the addition of BTOM and MAPBS can promote the crystallization of PLA. Moreover, the addition of BTOM not only can reduce the usage of PLA and the cost of the materials, but also reuse and reduce the waste from food industry.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1660
Author(s):  
Young-Rok Seo ◽  
Sang-U Bae ◽  
Jaegyoung Gwon ◽  
Qinglin Wu ◽  
Birm-June Kim

Polylactic acid (PLA)/polybutylene succinate (PBS)/wood flour (WF) biocomposites were fabricated by in situ reactive extrusion with coupling agents. Methylenediphenyl 4,4’-diisocyanate (MDI) and maleic anhydride (MA) were used as coupling agents. To evaluate the effects of MDI and MA, various properties (i.e., interfacial adhesion, mechanical, thermal, and viscoelastic properties) were investigated. PLA/PBS/WF biocomposites without coupling agents revealed poor interfacial adhesion leading to deteriorated properties. However, the incorporation of MDI and/or MA into biocomposites showed high performances by increasing interfacial adhesion. For instance, the incorporation of MDI resulted in improved tensile, flexural, and impact strengths and an increase in tensile and flexural modulus was observed by the incorporation of MA. Specially, remarkably improved thermal stability was found in the PLA/PBS/WF biocomposites with 1 phr MDI and 1 phr MA. Also, the addition of MDI or MA into biocomposites increased the glass transition temperature and crystallinity, respectively. For viscoelastic property, the PLA/PBS/WF biocomposites with 1 phr MDI and 1 phr MA achieved significant enhancement in storage modulus compared to biocomposites without coupling agents. Therefore, the most balanced performances were evident in the PLA/PBS/WF biocomposites with the hybrid incorporation of small quantities of MDI and MA.


2016 ◽  
Vol 847 ◽  
pp. 418-424
Author(s):  
Wei Wang ◽  
Jian Ying Yu ◽  
Yi Yi ◽  
Xiao Chen

Effect of three de-icing additives: NaCl, wrapped NaCl (W-NaCl) and Layered double hydroxides (LDHs) on thermo-oxidative and ultraviolet aging properties of bitumen were investigated by thin film oven test (TFOT), pressure aging vessel (PAV) and ultraviolet (UV) radiation test. The experimental result illustrated that compared with bitumen with MF, the softening point and viscosity of bitumen with NaCl and W-NaCl increased and the ductility decreased distinctly after TFOT, PAV and UV aging, indicating that NaCl and W-NaCl accelerated the aging of bitumen. However, for bitumen with LDHs, the softening point and viscosity decreased significantly, the ductility increased after aging, which demonstrated that the anti-aging properties of bitumen were improved effectively by LDHs.


Author(s):  
Lizhu Zhang ◽  
Yuanyuan Wang ◽  
Dongjie Yang ◽  
Huan Wang ◽  
Weifeng Liu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Usman Saeed ◽  
Sami Ullah Rathur ◽  
Hamad AlTuraif ◽  
Hisham Bamufleh

The nanocellulose fibril produced by using natural sources can be used in developing sustainable and green products. The useful features of nanocellulose fibril can include valuable physical properties, appropriate surface chemistry, low toxicity, and biocompatibility. The study presented shows the use of polylactic acid with five different percentages of nanocellulose fibril and the use of 3% maleic anhydride as a coupling agent. The maleic anhydride acts as coupling agent which improves the thermochemical and thermomechanical characteristics of the end product. The addition of 3% maleic anhydride as coupling agent with 10% nanocellulose fibril improved the impact strength up to 14.3%, elastic modulus up to 40.6%, and tensile strength up to 30.1%. Furthermore, the dynamic mechanical analysis result indicates that the inclusion of maleic anhydride improved the toughness by reducing the tan δ peak and increases the storage modulus. Finally, the scanning electron micrograph shows that the interfacial compatibility between nanocellulose fibril and polylactic acid matrix is improved with the addition of maleic anhydride.


2017 ◽  
Vol 05 (07) ◽  
pp. 61-70
Author(s):  
Junjie Tang ◽  
Pengwei Shi ◽  
Hao Duan ◽  
Kwang-Yoon Kim ◽  
Minqi Xin

2014 ◽  
Vol 599 ◽  
pp. 265-270 ◽  
Author(s):  
Pan Fei Liu ◽  
Jun Zheng ◽  
Shao Peng Wu

In this paper the effect of Layered double hydroxides (LDHs) on aging properties of asphalts was studied. The thin film oven test TFOT tests and ultraviolet (UV) aging process were used to simulate short-term and long-term aging of asphalts, respectively. After aging, the physical properties and dynamic shear rheological behaviors of LDHs modified asphalts were investigated. The viscosity of LDHs modified asphalts was measured by Brookfield viscometer before and after UV aging. After UV aging, with an increase of LDHs, softening point and viscosity value of modified asphalts decreased, while both of ductility and penetration increased, compared to base asphalts. Temperature sweep tests showed that the complex modulus of LDHs modified asphalts was lower than that of base asphalt, while phase angle was higher. The results showed that LDHs improved the UV aging resistance of the asphalt, and it could prevent asphalt from UV aging.


2018 ◽  
Author(s):  
Mohd Farid Hakim Mohd Ruf ◽  
Sahrim Ahmad ◽  
Ruey Shan Chen ◽  
Dalila Shahdan ◽  
Farrah Diyana Zailan

Sign in / Sign up

Export Citation Format

Share Document