The Water-Land-Energy-Food-Climate Nexus In Sardinia

Author(s):  
Antonio Trabucco ◽  
Sara Masia ◽  
Janez Sušnik ◽  
Donatella Spano ◽  
Simone Mereu

<p>Water use in the Mediterranean has been often pushed beyond sustainability, leading to water degradation and deterioration of ecosystem services. Different factors are interlinked with water management within a dynamically complex system (i.e. the Nexus) characterized by many feedbacks, trade-offs and high complexity of socioeconomic and environmental agents inducing non-linear responses hard to predict. Understanding such nexus systems requires innovative methodologies able to integrate different domains (e.g. hydrology, economics, planning, environmental and social sciences) and potential feedbacks, to support effective and targeted adaptation measures, taking into consideration uncertainty of climate change forecasts and associated impacts. Within the H2020 SIM4NEXUS project, water-land-energy-food-climate nexus links for Sardinia Island were represented with system dynamics modelling, together with relevant policy objectives, goals and measures. Sardinia, as many other Mediterranean regions, must implement a sustainable approach to water management, taking into account an equitable distribution of water resources between different sectors, economic needs, social priorities and ecology of freshwater ecosystems.</p><p>For the Sardinia case study, the main focus was the representation of the reservoir water balance for the island, accounting predominantly for water supply and for water demand related to agricultural, hydro-power production, domestic/tourist consumption and environmental flows. With irrigated agriculture being the largest water consumer, this sector was modelled in more detail with crop specific distribution and projections. While water is the central focus, links with other nexus sectors including energy, climate, food and land use are included. Energy generation and consumption were also important along with the mode of generation and sector of consumption, as was modelling the change in crop types (i.e. land use and food production changes) and the crop water requirements associated with potential crop and cropped area changes, and in response to change in the local climate. Energy production is modelled from sources including oil, coal and methane, solar, wind and hydropower, while energy demand comes from the agricultural, domestic, industrial and service sectors (including transportation). The use of energy from the different sectors and using different energy sources, either renewable and not renewable, have different implication on GHG and climate change.</p><p>While driven by strong interests to secure food provisions, an increase in irrigation in the Mediterranean may not be totally sustainable. Irrigation requirements of crops are projected to increase between 4 and 18% for 2050 compared to present conditions, limiting expansion of irrigated agriculture in Sardinia. Over the same period the inflow in the reservoirs can decrease between 5 and 20% and evaporation losses from reservoir surface bodies increase by 10%. Policy rules are tested and highlight how optimal allocation should be enforced in order to safeguard sustainability of natural resources over time, especially when considering climate variability. Natural resources are better preserved avoiding conflicts with strong seasonal peaks (i.e. summer). To meet these criticalities, new infrastructures and investments should increase use efficiency, All this would require changes in institutional and market conditions with a more cautious water management that includes prices and recycling policies.</p>

2021 ◽  
Author(s):  
Marcos Roberto Benso ◽  
Gabriela Chiquito Gesualdo ◽  
Eduardo Mario Mendiondo ◽  
Lars Ribbe ◽  
Alexandra Nauditt

<p>In the last decades, we have witnessed increasing losses on crop yield due to an increase in magnitude and frequency of hydrological extremes such as droughts and floods. These hazards promote systematic and regressive impacts on the economy and human behavior. Risk transfer mechanisms are key to cope with the economic impacts of these events, therefore safeguarding income to farmers and building resilience to the overall sector. The index-based insurance establishes an index that can be monitored in real or near-real-time, which is associated with losses to a specific agent. While the manifestation of the causality hazard to exposure and exposure to damage and its mathematical representation in cash flow equations is a hard task, incorporating an objective and transparent index adds up a new challenge to this modeling framework. Moreover, past events that have been used as the main guide to evaluating expected losses given risk can no longer offer an accurate risk estimation due to environmental changes. This work aims to tackle the hydrologic extremes risk transfer modeling in irrigated agriculture to obtain optimized premium values and parameters of an insurance fund for irrigated agriculture in Southeastern Brazil. This study will be developed in the Piracicaba, Jundiaí, and Capivari river basin, also known as PCJ catchment in the states of São Paulo and Minas Gerais, Brazil. The region, with approximately 5 million inhabitants, is considered one of the most important in Brazil due to its economic development, which represents about 7% of the National Gross Domestic Product (GDP). The Hydrologic Risk Transfer Model of the Hydraulic and Sanitation department of the University of São Paulo (MTRH-SHS) will be used to obtain optimized premium values. The main index variable is streamflow fitted to extreme value theory distribution for low and high flows. To evaluate climate change and land-use change scenarios, Regional Climate Models (RCMs) and land use projections will be related to streamflow in a hierarchical Bayesian framework. Synthetic data will be then simulated according to scenarios previously defined in a Monte Carlo approach. The hazard-damage function will be obtained by total crop yield and revenue per municipality, then the relationship between the index and expected losses is determined in an empirical equation. Finally, a cash flow computation is run with synthetic data obtaining optimized premiums in a way to minimize fund storage values. We expect to provide further evidence of the feasibility of actuarially fair premium values for the agents in the sector considering global phenomena of climate change and land-use change. Results will support climate change adaptation plans and policy as well as contribute to methods for estimating risk in a changing environment.</p>


2021 ◽  
Author(s):  
Alaba Boluwade ◽  
Asma Al-Mamani ◽  
Amna Alruheili ◽  
Ali Al-Maktoumi

<p> </p><p>*Correspondence: [email protected]</p><p><strong>Abstract: </strong>The primary objective of this study was to quantify the impacts of climate change on groundwater recharge using the 3D numerical-based HydroGeoSphere (HGS) model in the Ubar/ Shisr Agricultural region in South of Oman. This region has multi-million US dollar irrigated agriculture project purposely developed for the food security of the country. Excessive abstraction of groundwater for irrigation use (using the center pivot irrigation system) has contributed to the “drying-up” of several groundwater wells located in this area. Therefore, there is an urgent need to characterize the long-term sustainability of this agricultural project under a changing climate. HGS model was calibrated on both steady and transient states using selected monitoring wells located within the study area (approximately 980-km<sup>2</sup>). The coefficient of determination (R<sup>2</sup>) for the steady-state performance was 0.93 while the transient state performances correctly reproduced the seasonality for each monitoring well. A transient-based calibrated version of the HGS model, using 30-year historical observations (1980-2018) was termed “Reference” while model configurations were developed for the immediate climatic projection (period: 2020 – 2039) based on two Representative Concentration Pathways (RCP): - RPC4.5 and RCP8.5 extracted from the World Bank Knowledge portal. These two configured models (scenarios) were evaluated for monthly transient simulations (2020-2039). From the total hydraulic head (THH) fluctuations standpoint, there were reductions when compared with “Reference” for all the scenarios with up to 20% THH reductions for groundwater well levels under persistent seasonal agricultural activities. This study is very important in quantifying the trade-offs and synergies involved between sustainable water management and food security initiatives, especially for an arid climate.</p><p>Keywords: groundwater recharge; climate change, hydrogeologic modeling; Sultanate of Oman</p>


2021 ◽  
Author(s):  
Sandra Pool ◽  
Félix Francés ◽  
Alberto Garcia-Prats ◽  
Manuel Pulido-Velazquez ◽  
Carles Sanichs-Ibor ◽  
...  

<p>Irrigated agriculture is the major water consumer in the Mediterranean region. Improved irrigation techniques have been widely promoted to reduce water withdrawals and increase resilience to climate change impacts. In this study, we assess the impact of the ongoing transition from flood to drip irrigation on future hydroclimatic regimes in the agricultural areas of Valencia (Spain). The impact assessment is conducted for a control period (1971-2000), a near-term future (2020-2049) and a mid-term future (2045-2074) using a chain of models that includes five GCM-RCM combinations, two emission scenarios (RCP 4.5 and RCP 8.5), two irrigation scenarios (flood and drip irrigation), and twelve parameterizations of the hydrological model Tetis. Results of this modelling chain suggest considerable uncertainties regarding the magnitude and sign of future hydroclimatic changes. Yet, climate change could lead to a statistically significant decrease in future groundwater recharge of up -6.6% in flood irrigation and -9.3% in drip irrigation. Projected changes in actual evapotranspiration are as well statistically significant, but in the order of +1% in flood irrigation and -2.1% in drip irrigation under the assumption of business as usual irrigation schedules. The projected changes and the related uncertainties will pose a challenging context for future water management. However, our findings further indicate that the effect of the choice of irrigation technique may have a greater impact on hydroclimate than climate change alone. Explicitly considering irrigation techniques in climate change impact assessment might therefore be a way towards better informed decision-making.</p><p>This study has been supported by the IRRIWAM research project funded by the Coop Research Program of the ETH Zurich World Food System Center and the ETH Zurich Foundation, and by the ADAPTAMED (RTI2018-101483-B-I00) and TETISCHANGE (RTI2018-093717-B-I00) research projects funded by the Ministerio de Economia y Competitividad (MINECO) of Spain including EU FEDER funds.</p>


Author(s):  
Nkemdilim Maureen Ekpeni ◽  
Amidu Owolabi Ayeni

This chapter examines both concept of global hazard and disaster and its management in the lights of its vulnerability. It categorized the different types of hazards and disasters and their components. From the research findings, it is observed that hazards and disaster are two sides of a coin. They occur at the interface between human systems and natural events in our physical environments. This chapter highlights that the major environmental changes driving hazards and vulnerability to disasters are climate change, land-use changes, and degradation of natural resources. After presenting a typology of disasters and their magnitude globally, management of disaster has transited from just being a “response and relief”-centric approach to a mitigation and preparedness approach.


2012 ◽  

Are we making the best use of water? How do we judge this? Are there trade-offs between upstream and downstream water use? What are these and how are they resolved? Disputes over water allocations are, second to climate change, the dominant environmental and public policy issues of the present era. We are called upon to resolve such controversies using the principles of sustainable development, which integrates ecology, economics and ethics. This timely book establishes a template for all types of resource allocation disputes, whether in Australia or overseas. An expert team of ecologists, economists and sustainability experts spent three years interviewing people in the Little Swanport catchment, seeking answers to the optimal allocation of water on the Tasmanian East Coast. The hinterland of this area produces some of the most valuable merino wool in the world, the estuary grows mouth-watering oysters, and much of the land is in near-pristine condition, providing very valuable biodiversity resources. The book is written in an easy-to-read style and gradually evolves to become the story of everyday life of one small Australian catchment. It is about people living in rural settings in the upper catchment with soils and rainfall suitable for farming; people residing in coastal settlements in the lower catchment; people working and relaxing in the estuary where fishing and aquaculture occur; and people and their business in adjacent towns.


1995 ◽  
Vol 8 (2) ◽  
pp. 329-335 ◽  
Author(s):  
K. G. Hubbard ◽  
F. J. Flores-mendoza

2020 ◽  
Vol 13 (10) ◽  
pp. 4713-4747
Author(s):  
Tokuta Yokohata ◽  
Tsuguki Kinoshita ◽  
Gen Sakurai ◽  
Yadu Pokhrel ◽  
Akihiko Ito ◽  
...  

Abstract. Future changes in the climate system could have significant impacts on the natural environment and human activities, which in turn affect changes in the climate system. In the interaction between natural and human systems under climate change conditions, land use is one of the elements that play an essential role. On the one hand, future climate change will affect the availability of water and food, which may impact land-use change. On the other hand, human-induced land-use change can affect the climate system through biogeophysical and biogeochemical effects. To investigate these interrelationships, we developed MIROC-INTEG-LAND (MIROC INTEGrated LAND surface model version 1), an integrated model that combines the land surface component of global climate model MIROC (Model for Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land-use models. The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balance, human water management, and crop growth incorporates a land use decision-making model based on economic activities. In MIROC-INTEG-LAND, spatially detailed information regarding water resources and crop yields is reflected in the prediction of future land-use change, which cannot be considered in the conventional integrated assessment models. In this paper, we introduce the details and interconnections of the submodels of MIROC-INTEG-LAND, compare historical simulations with observations, and identify various interactions between the submodels. By evaluating the historical simulation, we have confirmed that the model reproduces the observed states well. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand. The newly developed MIROC-INTEG-LAND could be combined with atmospheric and ocean models to develop an integrated earth system model to simulate the interactions among coupled natural–human earth system components.


Author(s):  
Andrea Momblanch ◽  
Nachiket Kelkar ◽  
Gill Braulik ◽  
Jagdish Krishnaswamy ◽  
Ian P. Holman

AbstractIn India’s Indo-Gangetic plains, river flows are strongly altered by dams, barrages and water diversions for irrigation, urban supply, hydropower production and flood control. Human demands for freshwater are likely to intensify with climatic and socio-economic changes, exacerbating trade-offs between different sustainable development goals (SDGs) dependent on freshwater (e.g. SDG2, SDG6, SDG7, SDG11 and SDG15). Freshwater ecosystems and endangered aquatic species are not explicitly addressed in the SDGs, but only nested as targets within SDG6 and SDG15. Thus, there is high risk that decisions to advance other SDGs may overlook impacts on them. In this study, we link a water resource systems model and a forecast extinction risk model to analyze how alternative conservation strategies in the regulated Beas River (India) affect the likelihood of survival of the only remaining population of endangered Indus River Dolphins (IRD) in India in the face of climate change-induced impacts on river hydrology and human water demands, explicitly accounting for potential trade-offs between related SDGs. We find that the frequency of low flow released from the main reservoir may increase under some climate change scenarios, significantly affecting the IRD population. The strongest trade-offs exist between the persistence of IRD, urban water supply and hydropower generation. The establishment of ecologically informed reservoir releases combined with IRD population supplementation enhances the probability of survival of the IRD and is compatible with improving the status of relevant SDGs. This will require water managers, conservation scientists, and other stakeholders to continue collaborating to develop holistic water management strategies.


2021 ◽  
Author(s):  
Mariya Gorlova

Land use planning recognizes the need for incorporating climate change adaptation strategies to address natural disaster reoccurrence. In 2013, the Rockefeller Foundation developed the 100 Resilient Cities (100RC) model to support initiatives related to climate change and resilience. Globally through the model, cities appointed Chief Resilience Officers (CROs) to develop a vision, lead implementation and establish long-term city resilience. Three major cities in Canada (Toronto, Vancouver and Montreal) are now RC100 cities and subsequently introduced the positions of CROs. The purpose of this research paper is to highlight the current state of interventions in Toronto water management strategies to emphasize the role land use planning can have in Resilience Strategy development. Recommendations will be made based on literature review, policies and best practices scan, as well as stakeholders’ interview analysis. Safety and wellbeing of citizenry are at the forefront of the urban agenda, requiring utmost attention to climate change and precautionary measures against natural disaster. Key words: land use planning, urban water management, Canada, resilient cities


Sign in / Sign up

Export Citation Format

Share Document