Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways

2019 ◽  
Vol 55 (3) ◽  
pp. 203-210 ◽  
Author(s):  
Hui Qi ◽  
Dan-Ping Liu ◽  
Da-Wei Xiao ◽  
Da-Chuan Tian ◽  
Yong-Wei Su ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Donghua Huang ◽  
Yizhong Peng ◽  
Kaige Ma ◽  
Xiangcheng Qing ◽  
Xiangyu Deng ◽  
...  

Puerarin (PUR), an 8-C-glucoside of daidzein extracted from Pueraria plants, is closely related to autophagy, reduced reactive oxygen species (ROS) production, and anti-inflammatory effects, but its effects on human nucleus pulposus mesenchymal stem cells (NPMSCs) have not yet been identified. In this study, NPMSCs were cultured in a compression apparatus to simulate the microenvironment of the intervertebral disc under controlled pressure (1.0 MPa), and we found that cell viability was decreased and apoptosis level was gradually increased as compression duration was prolonged. After PUR administration, apoptosis level evaluated by flow cytometry and caspase-3 activity was remitted, and protein levels of Bas as well as cleaved caspase-3 were decreased, while elevated Bcl-2 level was identified. Moreover, ATP production detection, ROS, and JC-1 fluorography as well as quantitative analysis suggested that PUR could attenuate intercellular ROS accumulation and mitochondrial dysfunction. Besides, the rat tail compression model was utilized, which indicated that PUR could restore impaired nucleus pulposus degeneration induced by compression. The PI3K/Akt pathway was identified to be deactivated after compression stimulation by western blot, and PUR could rescue the phosphorylation of Akt, thus reactivating the pathway. The effects of PUR, such as antiapoptosis, cell viability restoration, antioxidation, and mitochondrial maintenance, were all counteracted by application of the PI3K/Akt pathway inhibitor (LY294002). Summarily, PUR could alleviate compression-induced apoptosis and cell death of human NPMSCs in vitro as well as on the rat compression model and maintain intracellular homeostasis by stabilizing mitochondrial membrane potential and attenuating ROS accumulation through activating the PI3K/Akt pathway.


2018 ◽  
Vol 19 (10) ◽  
pp. 2898 ◽  
Author(s):  
Yeo Yoon ◽  
Yong-Seok Han ◽  
Chul Yun ◽  
Jun Lee ◽  
Rang Kim ◽  
...  

Mesenchymal stem cells (MSC) could be a candidate for cell-based therapy in chronic kidney disease (CKD); however, the uremic toxin in patients with CKD restricts the therapeutic efficacy of MSCs. To address this problem, we explored the effect of pioglitazone as a measure against exposure to the uremic toxin P-cresol (PC) in MSCs. Under PC exposure conditions, apoptosis of MSCs was induced, as well as PC-induced dysfunction of mitochondria by augmentation of mitofusion, reduction of mitophagy, and inactivation of mitochondrial complexes I and IV. Treatment of MSCs with pioglitazone significantly inhibited PC-induced apoptosis. Pioglitazone also prevented PC-induced mitofusion and increased mitophagy against PC exposure through up-regulation of phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Furthermore, pioglitazone protected against PC-induced mitochondrial dysfunction by increasing the cytochrome c oxidase subunit 4 (COX4) level and activating complexes I and IV, resulting in enhancement of proliferation. In particular, activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) regulated the pioglitazone-mediated up-regulation of PINK-1. These results indicate that pioglitazone protects MSCs against PC-induced accumulated mitochondrial dysfunction via the NF-κB–PINK-1 axis under P-cresol exposure conditions. Our study suggests that pioglitazone-treated MSCs could be a candidate for MSC-based therapy in patients with CKD.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Qing Tian ◽  
Chen Cao ◽  
Weijian Qiu ◽  
Han Wu ◽  
Lijun Zhou ◽  
...  

Survival of mesenchymal stem cells in the bone marrow is essential for bone marrow microenvironment homeostasis, but the molecular mechanisms remain poorly understood. RIPK1 has emerged as a critical molecule of programmed cell death in tissue homeostasis. However, little is known about the regulation of RIPK1 on bone marrow mesenchymal stem cells (MSCs). Here, we have investigated for the first time the role of RIPK1 in bone marrow MSCs. We have found that RIPK1 knockdown suppressed proliferation, differentiation, and migration in bone marrow MSCs. Furthermore, RIPK1 knockdown resulted in the opening of mitochondrial permeability transition pore (mPTP) and mtDNA damage, leading to mitochondrial dysfunction, and consequently induced apoptosis and necroptosis in bone marrow MSCs. Moreover, we identified that the p53-PUMA axis pathway was involved in mitochondrial dysfunction in RIPK1-deficient bone marrow MSCs. Together, our findings highlighted that RIPK1 was indispensable for bone marrow MSC survival.


Stem Cells ◽  
2014 ◽  
Vol 33 (1) ◽  
pp. 211-218 ◽  
Author(s):  
Jessica L. Berlier ◽  
Sabrina Rigutto ◽  
Antoine Dalla Valle ◽  
Jessica Lechanteur ◽  
Muhammad S. Soyfoo ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 273-278
Author(s):  
Daqing Jiang ◽  
Xianxin Xie ◽  
Cong Wang ◽  
Weijie Li ◽  
Jianjun He

Our study intends to assess the relationship between exosomes derived from bone marrow mesenchymal stem cells (BMSC-exo) and breast cancer. BMSC-exo were isolated and characterized by transmission electron microscopy. After transfection of BMSCs with miR-204 inhibitor, breast cancer cells were incubated with BMSC-exo followed by analysis of cell proliferation by CCK-8 assay, cell apoptosis by flow cytometry, and expression of apoptosis-related protein and NF-κB signaling by western blot. The co-culture of BMSC-exo with breast cancer cells enhanced miR-204 transcription, inhibited cell proliferation and induced apoptosis. Further, BMSC-exo accelerated apoptosis as demonstrated by the increased level of Bax and casepase-3 and decreased Bcl-2 expression, as well as reduced NF-κB signaling activity. But knockdown of miR-204 abolished the effect of BMSC-exo on apoptosis and proliferation with NF-κB signaling activation. In conclusion, miR-204 from BMSC-exo restrains growth of breast cancer cell and might be a novel target for treating breast cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yiqiang Hu ◽  
Ranyang Tao ◽  
Linfang Wang ◽  
Lang Chen ◽  
Ze Lin ◽  
...  

Oxidative stress is relevant in compression-induced nucleus pulposus (NP) cell apoptosis and intervertebral disc (IVD) degeneration. Exosomes derived from bone mesenchymal stem cells (BMSCs-Exos) are key secretory products of MSCs, with important roles in tissue regeneration. This research is aimed at studying the protective impact of BMSCs-Exos on NP cell apoptosis caused by compression and investigating the underlying mechanisms. Our results indicated that we isolated BMSCs successfully. Exosomes were isolated from the BMSCs and found to alleviate the inhibitory effect that compression has on proliferation and viability in NP cells, decreasing the toxic effects of compression-induced NP cells. AnnexinV/PI double staining and TUNEL assays indicated that the BMSCs-Exos reduced compression-induced apoptosis. In addition, our research found that BMSCs-Exos suppressed compression-mediated NP oxidative stress by detecting the ROS and malondialdehyde level. Furthermore, BMSCs-Exos increased the mitochondrial membrane potential and alleviated compression-induced mitochondrial damage. These results indicate that BMSCs-Exos alleviate compression-mediated NP apoptosis by suppressing oxidative stress, which may provide a promising cell-free therapy for treating IVD degeneration.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Seok ◽  
Hyun Sook Jung ◽  
Sohae Park ◽  
Jung Ok Lee ◽  
Chong Jai Kim ◽  
...  

Abstract Background Human placenta-derived mesenchymal stem cells (PD-MSCs) are powerful sources for cell therapy in regenerative medicine. However, a limited lifespan by senescence through mechanisms that are well unknown is the greatest obstacle. In the present study, we first demonstrated the characterization of replicative senescent PD-MSCs and their possible mitochondrial functional alterations. Methods Human PD-MSCs were cultured to senescent cells for a long period of time. The cells of before passage number 8 were early cells and after passage number 14 were late cells. Also, immortalized cells of PD-MSCs (overexpressed hTERT gene into PD-MSCs) after passage number 14 were positive control of non-senescent cells. The characterization and mitochondria analysis of PD-MSCs were explored with long-term cultivation. Results Long-term cultivation of PD-MSCs exhibited increases of senescent markers such as SA-β-gal and p21 including apoptotic factor, and decreases of proliferation, differentiation potential, and survival factor. Mitochondrial dysfunction was also observed in membrane potential and metabolic flexibility with enlarged mitochondrial mass. Interestingly, we founded that fatty acid oxidation (FAO) is an important metabolism in PD-MSCs, and carnitine palmitoyltransferase1A (CPT1A) overexpressed in senescent PD-MSCs. The inhibition of CPT1A induced a change of energy metabolism and reversed senescence of PD-MSCs. Conclusions These findings suggest that alteration of FAO by increased CPT1A plays an important role in mitochondrial dysfunction and senescence of PD-MSCs during long-term cultivation.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Somayeh Keshtkar ◽  
Maryam Kaviani ◽  
Zahra Jabbarpour ◽  
Fatemeh Sabet Sarvestani ◽  
Mohammad Hossein Ghahremani ◽  
...  

Protection of isolated pancreatic islets against hypoxic and oxidative damage-induced apoptosis is essential during a pretransplantation culture period. A beneficial approach to maintain viable and functional islets is the coculture period with mesenchymal stem cells (MSCs). Hypoxia preconditioning of MSCs (Hpc-MSCs) for a short time stimulates the expression and secretion of antiapoptotic, antioxidant, and prosurvival factors. The aim of the present study was to evaluate the survival and function of human islets cocultured with Hpc-MSCs. Wharton’s jelly-derived MSCs were subjected to hypoxia (5% O2: Hpc) or normoxia (20% O2: Nc) for 24 hours and then cocultured with isolated human islets in direct and indirect systems. Assays of viability and apoptosis, along with the production of reactive oxygen species (ROS), hypoxia-inducible factor 1-alpha (HIF-1α), apoptotic pathway markers, and vascular endothelial growth factor (VEGF) in the islets, were performed. Insulin and C-peptide secretions as islet function were also evaluated. Hpc-MSCs and Nc-MSCs significantly reduced the ROS production and HIF-1α protein aggregation, as well as downregulation of proapoptotic proteins and upregulation of antiapoptotic marker along with increment of VEGF secretion in the cocultured islet. However, the Hpc-MSCs groups were better than Nc-MSCs cocultured islets. Hpc-MSCs in both direct and indirect coculture systems improved the islet survival, while promotion of function was only significant in the direct cocultured cells. Hpc potentiated the cytoprotective and insulinotropic effects of MSCs on human islets through reducing stressful markers, inhibiting apoptosis pathway, enhancing prosurvival factors, and promoting insulin secretion, especially in direct coculture system, suggesting the effective strategy to ameliorate the islet quality for better transplantation outcomes.


Sign in / Sign up

Export Citation Format

Share Document