Effect of Vacuum-Sintering Temperature on Magnetic and Mechanical Properties of TiC-TiN-Ni-Mo-C Cermets

2018 ◽  
Vol 49 (8) ◽  
pp. 3550-3555 ◽  
Author(s):  
Man Zhang ◽  
Qingqing Yang ◽  
Weihao Xiong ◽  
Shiquan Zhou ◽  
Shengqing Wang ◽  
...  
2012 ◽  
Vol 512-515 ◽  
pp. 377-381 ◽  
Author(s):  
Jin Rong Lu ◽  
Yang Zhou ◽  
Yong Zheng ◽  
Shi Bo Li ◽  
Zhen Ying Huang ◽  
...  

In this paper, a new type of Ti3SiC2/Cu composites with the volume fractions of 30% Ti3SiC2 particle was prepared by hot pressing and vacuum sintering respectively. The effects of sintering temperature and holding time on the density, resistance and Vickers hardness of Cu-30vol%Ti3SiC2 composite were investigated. The results show that the mechanical properties of the composites prepared by hot pressing are better than that prepared by vacuum sintering. The relative densities of Cu-30vol% Ti3SiC2 composites are rather high in suitable sintering conditions. It achieved 100% for the composites prepared by hot pressing at 930°C for 2h, and 98.4% for the composites prepared by vacuum sintering at 1250°C for 1h. At the same time, the maximum Vickers hardness reached 1735MPa at 900°C by hot pressing. The resistance and Vickers hardness of the composites decreased with an increase in sintering temperature, whereas the density increased. Scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) were used to observe the microstructure of the composites. The relationship between microstructure and mechanical properties was discussed.


2013 ◽  
Vol 275-277 ◽  
pp. 1917-1920
Author(s):  
Bing Liang Liang ◽  
Yun Long Ai ◽  
Chang Hong Liu ◽  
Nan Jiang

WC-Co cemented carbide specimens were prepared via vacuum sintering. The influences of composition and sintering temperature on phase composition, microstructure and mechanical properties of WC-Co cemented carbide were investigated. The results show that dense specimens were obtained in the sintering temperature range of 1280~1400°C and the relative density reached over 95%. Only WC and Co3W3C (-phase) were detected by XRD without any else phases, even though Co. With the ascended sintering temperature, hardness increased and the transverse rupture strength (TRS) ascended to peak value and then descended. WC-Co cemented carbide with excellent mechanical properties (HRA>90, TRS~700MPa and KIC>10MPa•m1/2) were obtained.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3938
Author(s):  
Kaixun Ji ◽  
Yanxin Meng ◽  
Fuzeng Wang ◽  
Yousheng Li

In this study, a Ti(C,N)-based cermet material was prepared through vacuum sintering. The research also investigates how holding time and maximum sintering temperature influence the material microstructure and mechanical properties. X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) were used to analyze the composition of the cermet. The microstructure of the cermet was analyzed and examined using a scanning electron microscope (SEM). A Vickers hardness tester was used to test the mechanical properties of the materials. As indicated by testing results, the hardness of the material decreases as the temperature of sintering increases, and its fracture toughness increases gradually as holding time increases. Ti(C,N)-based cermet manifested the optimal mechanical properties when sintering was conducted under 1400 °C with 80 min of holding time. Moreover, the material microstructure is significantly affected by the sintering process. The grain size of Ti(C,N) cermets increases as the sintering temperature increases. The microstructure tends to be uniform and the complete core-rim structures are established as the holding time increases.


2014 ◽  
Vol 926-930 ◽  
pp. 93-97
Author(s):  
Ai Min Jiang ◽  
Xian Quan Jiang ◽  
Zi Peng Zhao ◽  
Rong Yu ◽  
Rong Jie Yang

In this study, Ultrafine WC-VC-NbC-Co was sintered by vacuum sintering at the different sintering temperature. The microstructure and mechanical properties of alloy were analysed by Zeiss optical microscope, SEM-EDS. The results demonstrated that with the increasing sintering temperature, porosity first decreases and then increases, WC grain size enlarges content of η phase decreases. In addition, results reveal the best overall performance was abstained at 1440°C: Density, Vikers hardness, bening were: 14.30g/cm3, 1950HV30, 1787Mpa.


2012 ◽  
Vol 531-532 ◽  
pp. 3-7
Author(s):  
Shih Hsien Chang ◽  
Chung Wei Lee ◽  
Kuo Tsung Huang ◽  
Ming Wei Wu

The experimental results indicated that the WC-12wt% Co specimens showed excellent mechanical properties and microstructure by the optimal sintering process. The G5 specimen sintered at 1400°C/1 h achieved a relative density of 98% and a hardness of HRA 88.5. Meanwhile, the TRS increased to 2400 MPa. F12 specimens that sintered at 1350°C/1 h achieved a relative density of 99% and a hardness of HRA 92.5. The TRS was also enhanced to 2170 MPa. In this study, the η phase (Co3W3C) precipitated at a high sintering temperature. The precipitations generated by liquid phase sintering gathered in some specific regions of the specimens and reacted with the WC particles. In addition, Co3W3C was a hard and brittle phase that resulted in a low TRS for the specimens; and a large amount of η phases were detrimental to the fracture toughness of the specimens.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 155
Author(s):  
Feng Su ◽  
Guangtao Xu ◽  
Zhenhua Yao ◽  
Huachen Liu ◽  
Yikun Chen

High density of thermally stable Y-Si-O nanoparticles dispersed in the Fe matrix play a primary role in oxide dispersion strengthened (ODS) steel. In this study, the binding energies of solutes Y, O and Si with vacancies have been calculated in the framework of first-principles density functional theory. According to the calculations, any two solutes of Y, O and Si bound with each other strongly in the second nearest neighboring (NN) sites while not in 1NN. A vacancy (v) bounds strongly with Y and O in 1NN site. The binding sequence of solutes with v followed O-v → Y-v → Si-v, and the affinity of Y, Si and v with O followed O-Y → O-v → O-Si. The nucleation mechanism of Y-O-Si nanoclusters was determined, which gave the feasibility of adding Si to ODS steels. The core (consisting of Si and O)-shell (enriched Fe and Cr) structure of the microparticles was found in ODS steels containing Si, fabricated by mechanical alloying (MA) and vacuum sintering. Moreover the nanoparticles of monoclinic cubic Y2O3, Y2SiO5 and Y2Si2O7 with sizes of 5 ~ 12 nm were observed in ODS steel. Si reduced the sintering temperature by maximizing densities and mechanical properties at a lower sintering temperature. The steel with 3 wt% Si was sintered at 1280 °C, exhibiting the best comprehensive mechanical properties. The tensile strength, hardness and relative density were 1025 MPa, 442.44 HV and 95.3%, respectively.


2011 ◽  
Vol 54 (3) ◽  
pp. 325-330 ◽  
Author(s):  
S-H Chang ◽  
S-C Lee ◽  
C-H Tam ◽  
K-T Huang ◽  
C Liang ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


Sign in / Sign up

Export Citation Format

Share Document