Intermetallic phase detection in lead-free solders using synchrotron x-ray diffraction

2004 ◽  
Vol 33 (12) ◽  
pp. 1524-1529 ◽  
Author(s):  
Gavin J. Jackson ◽  
Hua Lu ◽  
Raj Durairaj ◽  
Nick Hoo ◽  
Chris Bailey ◽  
...  
2012 ◽  
Vol 569 ◽  
pp. 159-163 ◽  
Author(s):  
Sheng Hong Zhang ◽  
Quan Fang Chen

Lead-free solders have been gaining more and more attention recently. Sn-Bi system is one of the most promising candidates as the lead-free solder materials. In this article Polyoxyethylene lauryl ether (Brij 35) was used as the additive in the electrochemical deposition of Sn-Bi alloy. Various current densities and bath compositions have been investigated. Sn-Bi composites were successfully deposited on a copper substrate. The deposits were then characterized and studied by scanning electron microscopic (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). Results indicate that the morphology and crystalline orientations are composition dependent. Intermetallic compound (IMC) was formed during the reflow process.


2017 ◽  
Vol 62 (2) ◽  
pp. 1071-1074
Author(s):  
A. Gyenes ◽  
M. Benke ◽  
N. Teglas ◽  
E. Nagy ◽  
Z. Gacsi

Abstract According to the directives (RoHS and WEEE) adopted by the European Union, lead has been banned from the manufacturing processes because of its health and environmental hazards. Therefore, the development of lead-free solders is one of the most important research areas of the electronic industry. This paper investigates multicomponent Sn-Ag-Cu based lead-free solders with different compositions. The properties of the six-component Innolot (SAC+BiSbNi) and two low-Ag containing alloys were compared with the widespread used SAC307 solder. Microstructure investigations and X-ray diffraction measurements were performed to analyze and identify the formed phases, furthermore, tensile tests and microhardness measurements were executed to determine the mechanical properties of the examined solders.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2505
Author(s):  
Catalin Panaghie ◽  
Ramona Cimpoeșu ◽  
Bogdan Istrate ◽  
Nicanor Cimpoeșu ◽  
Mihai-Adrian Bernevig ◽  
...  

Zinc biodegradable alloys attracted an increased interest in the last few years in the medical field among Mg and Fe-based materials. Knowing that the Mg element has a strengthening influence on Zn alloys, we analyze the effect of the third element, namely, Y with expected results in mechanical properties improvement. Ternary ZnMgY samples were obtained through induction melting in Argon atmosphere from high purity (Zn, Mg, and Y) materials and MgY (70/30 wt%) master alloys with different percentages of Y and keeping the same percentage of Mg (3 wt%). The corrosion resistance and microhardness of ZnMgY alloys were compared with those of pure Zn and ZnMg binary alloy. Materials were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), linear and cyclic potentiometry, and immersion tests. All samples present generalized corrosion after immersion and electro-corrosion experiments in Dulbecco solution. The experimental results show an increase in microhardness and indentation Young Modulus following the addition of Y. The formation of YZn12 intermetallic phase elements with a more noble potential than pure Zinc is established. A correlation is obtained between the appearance of new Y phases and aggressive galvanic corrosion.


Author(s):  
Mohammad Faizan ◽  
Guo-X. Wang

Soldering has become an indispensable joining process in the electronic packaging industry. The industry is aiming for the use of environment friendly lead-free solders. All the lead-free solders are high tin-containing alloys. During the soldering process, an intense interaction of metallization on PCB and tin from the solder occurs at the metallization/solder interface. Intermetallic compound (IMC) is formed at the interface and subsequently PCB bond-metal (substrate) is dissolved into the molten solder. In the present study the terms bond-metal and substrate will be used interchangeably and the term 'substrate' refers to the top layer of the PCB which comes in contact with the molten solder during soldering reaction. Thickness of the intermetallic phase formed at the joint interface and amount of substrate lost is critical in achieving reliable solder joints. During the wet phase of soldering process, the IMC does not grow as layered structure; rather it takes the shape of scallops. The growth of scalloped IMC during the solder/substrate interaction entails complicated physics. Understanding of the actual kinetics involved in the formation of IMC phase is important in controlling the process to achieve desired results. This paper presents theoretical analysis of the kinetics involved in the formation of the scalloped intermetallic phase. The intermetallic phase growth is experimentally investigated to support the underlying kinetics of the process. Numerical model has been suggested to translate the physics of the process. The model is based on the basic mass diffusion equations and can predict the substrate dissolution and IMC thickness as a function of soldering time.


2013 ◽  
Vol 212 ◽  
pp. 15-20
Author(s):  
Kazimierz J. Ducki ◽  
Jacek Mendala ◽  
Lilianna Wojtynek

The influence of prolonged ageing on the precipitation process of the secondary phases in an Fe-Ni superalloy of A-286 type has been studied. The samples were subjected to a solution heat treatment at 980°C for 2 h and water quenched, and then aged at temperatures of 715, 750 and 780°C at holding times from 0.5 to 500 h. Structural investigations were conducted using TEM and X-ray diffraction methods. The X-ray phase analyses performed on the isolates were obtained by anodic dissolution of the solid samples. After solution heat treatment the alloy has the structure of twinned austenite with a small amount of undissolved precipitates, such as carbide TiC, carbonitride TiC0.3N0.7, nitride TiN0.3, carbosulfide Ti4C2S2, Laves phase Ni2Si, and boride MoB. The application of ageing causes precipitation processes of γ-Ni3(Al,Ti), G (Ni16Ti6Si7), η (Ni3Ti), β (NiTi) and σ (Cr0.46Mo0.40Si0.14) intermetallic phases, as well as the carbide M23C6. It was found that the main phase precipitating during alloy ageing was the γ intermetallic phase.


2016 ◽  
Vol 34 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Sumit K. Roy ◽  
S. Chaudhuri ◽  
R.K. Kotnala ◽  
D.K. Singh ◽  
B.P. Singh ◽  
...  

AbstractIn this work the X-ray diffraction, scanning electron microscopy, Raman and dielectric studies of lead free perovskite (1 – x)Ba0.06(Na1/2Bi1/2)0.94TiO3–xNaNbO3 (0 ⩽ x ⩽ 1.0) ceramics, prepared using a standard solid state reaction method, were investigated. X-ray diffraction studies of all the ceramics suggested the formation of single phase with crystal structure transforming from rhombohedral-tetragonal to orthorhombic symmetry with the increase in NaNbO3 content. Raman spectra also confirmed the formation of solid solution without any new phase. Dielectric studies showed that the phase transition is of diffusive character and diffusivity parameter decreases with increasing NaNbO3 content. The compositional fluctuation was considered to be the main cause of diffusivity.


2005 ◽  
Vol 13 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Sheng-Fang Huang ◽  
Hsien-Lung Tsai ◽  
Shun-Tian Lin

2015 ◽  
Vol 05 (04) ◽  
pp. 1550028 ◽  
Author(s):  
K. Anjali ◽  
T. G. Ajithkumar ◽  
P. A. Joy

Solid solutions of the lead-free ferroelectric oxides Bi[Formula: see text]Na[Formula: see text]TiO3 (BNT) and Bi[Formula: see text]K[Formula: see text]TiO3 (BKT), represented as ([Formula: see text])BNT–xBKT, are studied for very close compositions in the range [Formula: see text] to understand the correlation between the structure and the properties. Compositions are varied in steps of [Formula: see text] in the range [Formula: see text] and [Formula: see text] and [Formula: see text] in the range [Formula: see text], to precisely locate the structural transition as well as the morphotropic phase boundary (MPB) region and the compositional region of best performance. Rietveld refinement analysis of the powder X-ray diffraction patterns showed monoclinic phase up to x = 0.17 and a mixture of monoclinic and tetragonal phases for [Formula: see text]. Similarly, the density and the dielectric constant showed linear variation up to [Formula: see text] and a large increase above this composition, showing maximum values in the compositional range [Formula: see text], corresponding to the MPB region. Microstructural features also showed corresponding changes, indicating close relationship between the structure, microstructure and properties of the different compositions.


2000 ◽  
Vol 648 ◽  
Author(s):  
Chichang Zhang ◽  
Aris Christou

AbstractShape memory alloy TiNi thin films on GaAs have been investigated. A series of TiNi compositions were electron beam deposited on GaAs initially as thin multilayers of Ti and Ni. The intermetallic phase of TiNi was formed by annealing and complete intermixing of the multilayers at 370oC. The intermetallic phases were investigated with X-ray diffraction techniques. The annealing kinetics and resistivity investigations were carried out in order to minimize the sheet resistance of the intermetallic phase. TiNi Schottky barriers on GaAs have been fabricated and their performance will be reported. Additional investigations on surface morphology using the energy dispersive spectroscopy as well as TEM investigations show the correlation between microstructure, intermetallic phase formation and sheet resistance.


Sign in / Sign up

Export Citation Format

Share Document