Effect of Lubricants and Annealing Treatment on the Electrical Conductivity and Microstructure of Rolled Copper Foil

2015 ◽  
Vol 44 (7) ◽  
pp. 2432-2439 ◽  
Author(s):  
Sang Xiong ◽  
Jianlin Sun ◽  
Yang Xu ◽  
Xundong Yan
2018 ◽  
Vol 921 ◽  
pp. 231-235
Author(s):  
Ke Bin Sun ◽  
Yan Feng Li ◽  
Ye Xin Jiang ◽  
Guo Jie Huang ◽  
Xue Shuai Li ◽  
...  

Copper foils with 91% cold rolled deformation annealed at temperature between 140°C and 170 °C.The microstructures were observed by EBSD. The mechanical properties were measured at room temperature by tensile test machine and the fracture morphologies observed by SEM. After annealed at 150 °C, recrystallization begins to occur, while the elongation increases evidently and tensile strength decreases sharply. When the temperature rises to 170 °C, recrystallization is complete and the grain starts to grow. When the foils are annealed at 140 °C, it exhibits a strong cold rolling textures characterized by Brass {011}<211> and Cu {112}<111>. After annealed at 170 °C, there are olny weak Brass {011}<211> texture.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3140
Author(s):  
Kamil Dydek ◽  
Anna Boczkowska ◽  
Rafał Kozera ◽  
Paweł Durałek ◽  
Łukasz Sarniak ◽  
...  

The main aim of this work was the investigation of the possibility of replacing the heavy metallic meshes applied onto the composite structure in airplanes for lightning strike protection with a thin film of Tuball single-wall carbon nanotubes in the form of ultra-light, conductive paper. The Tuball paper studied contained 75 wt% or 90 wt% of carbon nanotubes and was applied on the top of carbon fibre reinforced polymer before fabrication of flat panels. First, the electrical conductivity, impact resistance and thermo-mechanical properties of modified laminates were measured and compared with the reference values. Then, flat panels with selected Tuball paper, expanded copper foil and reference panels were fabricated for lightning strike tests. The effectiveness of lightning strike protection was evaluated by using the ultrasonic phased-array technique. It was found that the introduction of Tuball paper on the laminates surface improved both the surface and the volume electrical conductivity by 8800% and 300%, respectively. The impact resistance was tested in two directions, perpendicular and parallel to the carbon fibres, and the values increased by 9.8% and 44%, respectively. The dynamic thermo-mechanical analysis showed higher stiffness and a slight increase in glass transition temperature of the modified laminates. Ultrasonic investigation after lightning strike tests showed that the effectiveness of Tuball paper is comparable to expanded copper foil.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1681 ◽  
Author(s):  
Bin Luo ◽  
Mingchao Chi ◽  
Qingtong Zhang ◽  
Mingfu Li ◽  
Changzhou Chen ◽  
...  

Technical lignin from pulping, an aromatic polymer with ~59% carbon content, was employed to develop novel lignin-based nano carbon thin film (LCF)-copper foil composite films for thermal management applications. A highly graphitized, nanoscale LCF (~80–100 nm in thickness) was successfully deposited on both sides of copper foil by spin coating followed by annealing treatment at 1000 °C in an argon atmosphere. The conditions of annealing significantly impacted the morphology and graphitization of LCF and the thermal conductivity of LCF-copper foil composite films. The LCF-modified copper foil exhibited an enhanced thermal conductivity of 478 W m−1 K−1 at 333 K, which was 43% higher than the copper foil counterpart. The enhanced thermal conductivity of the composite films compared with that of the copper foil was characterized by thermal infrared imaging. The thermal properties of the copper foil enhanced by LCF reveals its potential applications in the thermal management of advanced electronic products and highlights the potential high-value utility of lignin, the waste of pulping.


2009 ◽  
Vol 79-82 ◽  
pp. 1579-1582
Author(s):  
Chang Chun Wang ◽  
Guang Hui Min ◽  
Suk Bong Kang

SiCp reinforced copper matrix composites with the reinforcement content of 30-50vol. % were fabricated by hot pressing using Cu-coated and uncoated SiC powder. And the microstructure and electrical conductivity of the composites were also studied. The results showed that with the increasing of SiCp particle size, the electrical conductivity of the composites also increased. And the oxides in the composites can decrease the electrical conductivity of the composites obviously. The electrical conducting property of the composites can be improved by the copper coating layer and suitable annealing treatment. It provided important data for the application of SiCp/Cu composites as electronic packaging materials.


2000 ◽  
Vol 29 (5) ◽  
pp. 611-616 ◽  
Author(s):  
Takaaki Hatano ◽  
Yoshio Kurosawa ◽  
Junji Miyake

2022 ◽  
Vol 163 ◽  
pp. 106663
Author(s):  
Wen-jing Wang ◽  
Jing Liu ◽  
Xue-feng Liu ◽  
Qing-wei Li

Sign in / Sign up

Export Citation Format

Share Document