Electrical Behavior of SiCp Reinforced Copper Matrix Composites by Hot Pressing

2009 ◽  
Vol 79-82 ◽  
pp. 1579-1582
Author(s):  
Chang Chun Wang ◽  
Guang Hui Min ◽  
Suk Bong Kang

SiCp reinforced copper matrix composites with the reinforcement content of 30-50vol. % were fabricated by hot pressing using Cu-coated and uncoated SiC powder. And the microstructure and electrical conductivity of the composites were also studied. The results showed that with the increasing of SiCp particle size, the electrical conductivity of the composites also increased. And the oxides in the composites can decrease the electrical conductivity of the composites obviously. The electrical conducting property of the composites can be improved by the copper coating layer and suitable annealing treatment. It provided important data for the application of SiCp/Cu composites as electronic packaging materials.

2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040045
Author(s):  
Dandan Zhang ◽  
Huaxing Xiao ◽  
Wei Jiang ◽  
Xia Cao ◽  
Manyu Ye ◽  
...  

Copper matrix composites reinforced with graphene nanoplatelets (GNPs) were prepared by vacuum hot pressing of ball milled mixtures of powders. Two grades of GNPs were used; one with average thickness of 2 nm and average lateral size of 6 [Formula: see text]m and another with much larger lateral size of 80 [Formula: see text]m. Microstructure and properties of as-prepared composites containing 10 vol.% GNPs were studied. The GNPs sheets are uniformly distributed and well aligned in the Cu matrix. The microstructure observation shows that the GNPs-2–6 exhibits a better dispersion in the Cu matrix than GNPs-2–80. The addition of fine GNPs-2–6 lead to [Formula: see text]31% higher tensile strength and approximately same electrical conductivity of the Cu matrix, while the GNPs-2–80/Cu composite only shows a [Formula: see text]15% increase of tensile strength and a lower electrical conductivity than the Cu matrix.


2021 ◽  
Vol 171 ◽  
pp. 110812
Author(s):  
C. Salvo ◽  
E. Chicardi ◽  
J. Hernández-Saz ◽  
C. Aguilar ◽  
P. Gnanaprakasam ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 285-292 ◽  
Author(s):  
Jiang Feng ◽  
Shuhua Liang ◽  
Xiuhua Guo ◽  
Yi Zhang ◽  
Kexing Song

Abstract Copper matrix composites reinforced with 1, 3, 5, 7 vol.% Cu-coated SiC whiskers of consistent orientation (SiCw/Cu) were prepared by powder metallurgy and hot extrusion. The microstructure of composites was investigated by scanning electron microscopy. The SiC whiskers were arranged along the direction of hot extrusion and distributed uniformly. The composites were fabricated into specimens with different whisker orientations, and their electrical conductivity was tested. The effects of SiC whiskers orientation and content on the electrical conductivity of composites were investigated through experiment. Results show that the SiC whiskers content was the major factor affecting the electrical conductivity of the composites. With increasing SiC whisker orientations angel, the electrical conductivity of composites is improved. The electrical conductivity model has been established by taking into account the SiC whiskers content, whisker orientation and microstructure parameters, and the results were in good agreement with experimental data. Graphical abstract: Copper matrix composites reinforced with SiC whiskers of consistent orientation were prepared. The orientation of SiC whiskers changes from 0∘ to 90∘, resulting in electrical conductivity anisotropy of composites.


Sign in / Sign up

Export Citation Format

Share Document