Thermal Resistance Analysis of Light-Emitting Diode Modules with Thermal Via Structure

2018 ◽  
Vol 47 (12) ◽  
pp. 7323-7330
Author(s):  
Hyeong-Won Shin ◽  
Seung-Boo Jung ◽  
Hyo-Soo Lee
2015 ◽  
Vol 62 (11) ◽  
pp. 6925-6933 ◽  
Author(s):  
Huan Ting Chen ◽  
Yuk Fai Cheung ◽  
Hoi Wai Choi ◽  
Siew Chong Tan ◽  
S. Y. Hui

2015 ◽  
Vol 15 (10) ◽  
pp. 7578-7581
Author(s):  
Jung-Kab Park ◽  
Jin-Ha Shin ◽  
Mun-Gi Jung ◽  
Tomabechi Shigehisa ◽  
Hwa-Sun Park ◽  
...  

Unlike other light sources such as fluorescent lamps and incandescent bulbs, light-emitting diodes (LED) convert 70∼80% of energy into heat. If the heat produced an LED chip is not effectively released, its luminous efficiency and lifespan are reduced. Therefore, as a method effectively release heat, an LED PKG substrate containing a heat-releasing material with excellent thermal conductance was fabricated, and its thermal resistance and luminous efficiency were analyzed. In this experiment, a thin polyimide film with excellent ductility was used to fabricate the LED PKG substrate. A 35-μm-thick Cu foil with excellent thermal conductance was subjected to high temperature and pressure and attached to both sides of the polyimide film. By electroplating Ag or Au, which has excellent thermal conductance, for us as the electrode and heat-releasing material, LED PKG substrate was fabricated with a thickness of approximately 170 μm. (−40 °C → RT → 120 °C). The results revealed that the LED PKG substrate having a Ag electrode with excellent thermal conductance had an excellent thermal resistance of approximately 4.2 °C/W (Au electrode: 5.6 °C/W). The luminous flux after 100 cycles in the thermal shock test was reduced by approximately 0.09% (Au electrode: 2.77%), indicating that the LED PKG substrate had excellent thermal resistance without any mechanical and material defects in a rapid-temperature-changing environment. The advantages and excellent thermal resistance can be exploited in cellular phones and LCD panels, and heat-releasing problems in thin panels be solved.


2016 ◽  
Vol 138 (1) ◽  
Author(s):  
S. Shanmugan ◽  
O. Zeng Yin ◽  
P. Anithambigai ◽  
D. Mutharasu

All solid-state lighting products produce heat which should be removed by use of a heat sink. Since the two mating surfaces of light emitting diode (LED) package and heat sink are not flat, a thermal interface material (TIM) must be applied between them to fill the gaps resulting from their surface roughness and lack of coplanarity. The application of a traditional TIM may squeeze out when pressure is applied to join the surfaces and hence a short circuit may result. To avoid such a problem, a thin solid film based TIM has been suggested. In this study, a zinc oxide (ZnO) thin film was coated on Cu substrates and used as the TIM. The ZnO thin film coated substrates were used as heat sink purposes in this study. The prepared heat sink was tested with 3 W green LED and the observed results were compared with the results of same LED measured at bare and commercial thermal paste coated Cu substrates boundary conditions. The influence of interface material thickness on total thermal resistance (Rth-tot), rise in junction temperature (TJ), and optical properties of LED was analyzed. A noticeable reduction in Rth-tot (5.92 K/W) as well as TJ (ΔTJ = 11.83 °C) was observed for 800 nm ZnO thin film coated Cu substrates boundary conditions when compared with bare and thermal paste coated Cu substrates tested at 700 mA. Change in TJ influenced the thermal resistance of ZnO interface material. Improved lux level and decreased correlated color temperature (CCT) were also observed with ZnO coated Cu substrates.


2012 ◽  
Vol 503 ◽  
pp. 397-401 ◽  
Author(s):  
Zhe Ran Sun ◽  
Da Ming Wu ◽  
Ya Jun Zhang ◽  
Jian Zhuang ◽  
Kai Fang Dang

The characteristics of several package structures of high power white Light emitting diode (LED) are described in this paper. The influence of different structures on thermal properties is analyzed. Forward voltage method is used to test the thermal resistance of LED chips.


Author(s):  
Shan Gao ◽  
Jupyo Hong ◽  
Sanghyun Choi ◽  
Seogmoon Choi ◽  
Sung Yi

High Brightness (HB) Light emitting diode (LED) technology is becoming the choice for many lighting applications. However, one potential problem with LED based lighting systems is the thermal issue during service, which has restricted LED in the application of mini-devices. In this study, thermal performance of Al2O3 (ALOX) based HBLED package is considered. Steady state heat transfer analysis is carried out using 3-D finite element method (FEM). A new algorithm has firstly been developed, which combines FEM analysis and thermal transient experimental investigation, to determine the interfacial thermal properties of the package. Then the interfacial thermal properties are applied in the FEM model for heat transfer analysis. Temperature distribution and heat flux analysis are calculated and thermal resistance of the package is determined based on the FEM simulation. The results show that die attachment (solder material) plays the most important role in the thermal resistance of the ALOX package, i.e., it takes about 80% of the total thermal resistance. In addition, thermal resistance of the package is mainly caused by the interfacial thermal resistances, the behavior of which depends strongly on manufacturing processes. The parametric study shows that Al2O3 isolation ring increases the thermal resistance of the package because it creates an interface inside the aluminum substrate. Pure Aluminum substrate achieves a better performance in the respect of thermal behavior of packaging designs.


2012 ◽  
Vol 12 (4) ◽  
pp. 3210-3213
Author(s):  
HyoSoo Lee ◽  
Hyung Won Shin ◽  
Seung Boo Jung

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
S. Shanmugan ◽  
D. Mutharasu

AlN thin film was coated over Cu substrate (575 mm2) with 400 nm thickness using DC sputtering for thermal interface material (TIM) application. Aluminum Nitride (AlN)-coated Cu substrate (AlN/Cu) was used as a heat sink for 3-W green light emitting diode (LED). The thermal transient curve was recorded for given LED attached with bare Cu and AlN-coated Cu substrate at three different driving currents. LED attached on AlN/Cu showed the reduced raise in junction temperature (TJ) by 2.59 °C at 700 mA. The LED/TIM/AlN/Cu boundary condition was not supported to reduce the TJ. The total thermal resistance (Rth-tot) was reduced for AlN-coated Cu substrate at 350 mA. The thermal resistance between metal core printed circuit board and Cu substrate (Rth-b-hs) was also observed as low for AlN-coated Cu substrates compared with other boundary conditions measured at 700 mA. The observed results were supported for the use of AlN thin film as TIM in high power LEDs.


Sign in / Sign up

Export Citation Format

Share Document