Machining of Hard-to-Cut Materials: Impact of Varying Weight Proportion of Boron Carbide Particle Addition on Cutting Force and Surface Roughness of Al6061

Author(s):  
Vijaykumar Hiremath ◽  
V. Bharath ◽  
V. Auradi ◽  
S. T. Dundur ◽  
Madeva Nagaral
Carbon ◽  
2003 ◽  
Vol 41 (5) ◽  
pp. 1096-1099 ◽  
Author(s):  
Jorge Sanchez-Coronado ◽  
D.D.L Chung ◽  
M Martı́nez-Escandell ◽  
J Narciso ◽  
F Rodrı́guez-Reinoso

2009 ◽  
Vol 16 (3) ◽  
pp. 187-196 ◽  
Author(s):  
Adem Acır, ◽  
Yakup Turgut, ◽  
Mustafa Übeyli, ◽  
Mustafa Günay, ◽  
Ulvi Şeker,

2021 ◽  
pp. 089270572199320
Author(s):  
Prakhar Kumar Kharwar ◽  
Rajesh Kumar Verma

The new era of engineering society focuses on the utilization of the potential advantage of carbon nanomaterials. The machinability facets of nanocarbon materials are passing through an initial stage. This article emphasizes the machinability evaluation and optimization of Milling performances, namely Surface roughness (Ra), Cutting force (Fc), and Material removal rate (MRR) using a recently developed Grey wolf optimization algorithm (GWOA). The Taguchi theory-based L27 orthogonal array (OA) was employed for the Machining (Milling) of polymer nanocomposites reinforced by Multiwall carbon nanotube (MWCNT). The second-order polynomial equation was intended for the analysis of the model. These mathematical models were used as a fitness function in the GWOA to predict machining performances. The ANOVA outcomes efficiently explore the impact of machine parameters on Milling characteristics. The optimal combination for lower surface roughness value is 1.5 MWCNT wt.%, 1500 rpm of spindle speed, 50 mm/min of feed rate, and 3 mm depth of cut. For lower cutting force, 1.0 wt.%, 1500 rpm, 90 mm/min feed rate and 1 mm depth of cut and the maximize MRR was acquired at 0.5 wt.%, 500 rpm, 150 mm/min feed rate and 3 mm depth of cut. The deviation of the predicted value from the experimental value of Ra, Fc, and MRR are found as 2.5, 6.5 and 5.9%, respectively. The convergence plot of all Milling characteristics suggests the application potential of the GWO algorithm for quality improvement in a manufacturing environment.


2017 ◽  
Vol 15 (3) ◽  
pp. 283-296 ◽  
Author(s):  
Aezhisai Vallavi Muthusamy Subramanian ◽  
Mohan Das Gandhi Nachimuthu ◽  
Velmurugan Cinnasamy

2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


Author(s):  
MAHIR AKGÜN

This study focuses on optimization of cutting conditions and modeling of cutting force ([Formula: see text]), power consumption ([Formula: see text]), and surface roughness ([Formula: see text]) in machining AISI 1040 steel using cutting tools with 0.4[Formula: see text]mm and 0.8[Formula: see text]mm nose radius. The turning experiments have been performed in CNC turning machining at three different cutting speeds [Formula: see text] (150, 210 and 270[Formula: see text]m/min), three different feed rates [Formula: see text] (0.12 0.18 and 0.24[Formula: see text]mm/rev), and constant depth of cut (1[Formula: see text]mm) according to Taguchi L18 orthogonal array. Kistler 9257A type dynamometer and equipment’s have been used in measuring the main cutting force ([Formula: see text]) in turning experiments. Taguchi-based gray relational analysis (GRA) was also applied to simultaneously optimize the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]). Moreover, analysis of variance (ANOVA) has been performed to determine the effect levels of the turning parameters on [Formula: see text], [Formula: see text] and [Formula: see text]. Then, the mathematical models for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) have been developed using linear and quadratic regression models. The analysis results indicate that the feed rate is the most important factor affecting [Formula: see text] and [Formula: see text], whereas the cutting speed is the most important factor affecting [Formula: see text]. Moreover, the validation tests indicate that the system optimization for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) is successfully completed with the Taguchi method at a significance level of 95%.


2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


Sign in / Sign up

Export Citation Format

Share Document