scholarly journals Measuring and modelling of process forces during tapping using single tooth analogy process

Author(s):  
F. Geßner ◽  
M. Weigold ◽  
E. Abele

AbstractFor machining internal threads, tapping is a commonly used process. However, due to the complex geometry of the tapping tool, each tooth has a unique geometry resulting in individual forces. Since the forces act synchronously during the process, they partly compensate each other. However, since resulting forces in tapping can cause undesired deflection of the tool which can lead to threads that are not true to gauge or tool breakage, the knowledge of the forces is crucial. To predict the occurring forces on each tooth, different modelling approaches can be used. An approach based on the chip load-cutting force relationship is the mechanistic modelling. Therefore, a suitable force model is of central importance. An empirical force model can be established using an analogy process. Within this work a single tooth analogy process is presented to measure the forces of each tooth separately. By means of a geometrical analysis of the real tool, the chip sizes, such as the cross-section area of the undeformed chip are calculated. Merging the measured process forces from the analogy process and the actual chip sizes, an empirical force model is set up using multivariate regression. The model is validated by implementing it in an existing framework and comparing the results to experimental data.

2018 ◽  
pp. 36-39
Author(s):  
N Ikramov ◽  
T Majidov

The article brings up data on sediment diversity at watercourse bed and on their movement in the form of ridges. The ridge form movement of sediment leads to the reduction of reservoir volume and canal cross section area, which has an effect on their carrying capacity, filling of pump station forechambers and hydroelectric station pressure basins with sediment. The presence of sediment in flow leads to abrasive deterioration of pumps, water motors and pressure pipes and to other negative consequences. Research work tasks on the study of these effects have been examined with the purpose of preventing such negative consequences. On the basis of laboratory data diagrams and relationships were obtained for ridge length, height and movement velocity vs. sediment hydraulic and geometric sizes.


2012 ◽  
Vol 497 ◽  
pp. 89-93
Author(s):  
Liang Liang Yuan ◽  
Ke Hua Zhang ◽  
Li Min

In order to process heterotype hole of workpiece precisely, an open abrasive flow polish machine is designed, and the optimization design of machine frame is done for low cost. Firstly, basing on the parameters designed with traditional ways, three-dimensional force model is set up with the soft of SolidWorks. Secondly, the statics and modal analysis for machine body have been done in Finite element methods (FEM), and then the optimization analysis of machine frame has been done. At last, the model of rebuild machine frame has been built. Result shows that the deformation angle value of machine frame increased from 0.72′ to 1.001′, the natural frequency of the machine decreased from 75.549 Hz to 62.262 Hz, the weight of machine decreased by 74.178 Kg after optimization. It meets the strength, stiffness and angel stiffness requirement of machine, reduces the weight and cost of machine.


2020 ◽  
Vol 47 (No. 1) ◽  
pp. 13-20
Author(s):  
Jitka Blažková ◽  
František Paprštein ◽  
Lubor Zelený ◽  
Adéla Skřivanová ◽  
Pavol Suran

The cropping of six sweet cherry cultivars that originated in the Research and Breeding Institute of Pomology at Holovousy, and a standard one, ‘Burlat’, were evaluated on three rootstocks in the period of 2007–2017. Trees planted in a spacing of 1.5 m × 5.0 m were trained as tall spindle axes utilising their natural tendency to develop a central leader. On the standard rootstock, P-TU-2, ‘Tim’ was the most productive with a mean total harvest of 47.6 kg per tree. ‘Sandra’ yielded the most on the PHLC rootstock with 56.2 kg per tree and ‘Helga’ yielded the most on Gisela 5 with a mean total harvest of 55.9 kg per tree. The mean impact of the rootstock on the tree vigour, measured upon the trunk cross section area, ranged from 148.4 cm2 on the standard rootstock P-TU-2 to 114.1 cm2 on the PHLC and 125.2 cm2 on Gisela 5 . On the standard rootstock P-TU-2, the most vigorous one according to this criterion was ‘Jacinta’ (178.0 cm2) whereas ‘Justyna’ (109.7 cm2) was the least vigorous. On the PHLC, the most vigorous was ‘Sandra’ (147.2 cm2) and the least was ‘Amid’ (94.0 cm2). The other tree characteristics were mainly dependant on the cultivar and minimally, or not at all, influenced by the rootstock vigour.


Author(s):  
Alexis Giauque ◽  
Maxime Huet ◽  
Franck Clero ◽  
Sébastien Ducruix ◽  
Franck Richecoeur

Indirect combustion noise originates from the acceleration of nonuniform temperature or high vorticity regions when convected through a nozzle or a turbine. In a recent contribution (Giauque et al., 2012, “Analytical Analysis of Indirect Combustion Noise in Subcritical Nozzles,” ASME J. Eng. Gas Turbies Power, 134(11), p. 111202) the authors have presented an analytical thermoacoustic model providing the indirect combustion noise generated by a subcritical nozzle when forced with entropy waves. This model explicitly takes into account the effect of the local changes in the cross-section area along the configuration of interest. In this article, the authors introduce this model into an optimization procedure in order to minimize or maximize the thermoacoustic noise emitted by arbitrarily shaped nozzles operating under subsonic conditions. Each component of the complete algorithm is described in detail. The evolution of the cross-section changes are introduced using Bezier's splines, which provide the necessary freedom to actually achieve arbitrary shapes. Bezier's polar coordinates constitute the parameters defining the geometry of a given individual nozzle. Starting from a population of nozzles of random shapes, it is shown that a specifically designed genetic optimization algorithm coupled with the analytical model converges at will toward a quieter or noisier population. As already described by Bloy (Bloy, 1979, “The Pressure Waves Produced by the Convection of Temperature Disturbances in High Subsonic Nozzle Flows,” J. Fluid Mech., 94(3), pp. 465–475), the results therefore confirm the significant dependence of the indirect combustion noise with respect to the shape of the nozzle, even when the operating regime is kept constant. It appears that the quietest nozzle profile evolves almost linearly along its converging and diverging sections, leading to a square evolution of the cross-section area. Providing insight into the underlying physical reason leading to the difference in the noise emission between two extreme individuals, the integral value of the source term of the equation describing the behavior of the acoustic pressure of the nozzle is considered. It is shown that its evolution with the frequency can be related to the global acoustic emission. Strong evidence suggest that the noise emission increases as the source term in the converging and diverging parts less compensate each other. The main result of this article is the definition and proposition of an acoustic emission factor, which can be used as a surrogate to the complex determination of the exact acoustic levels in the nozzle for the thermoacoustic shape optimization of nozzle flows. This acoustic emission factor, which is much faster to compute, only involves the knowledge of the evolution of the cross-section area and the inlet thermodynamic and velocity characteristics to be computed.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Ludovic O Bénard ◽  
Daniel S Matasic ◽  
Mathilde Keck ◽  
Anne-Marie Lompré ◽  
Roger J Hajjar ◽  
...  

STromal Interaction Molecule 1 (STIM1), a membrane protein of the sarcoplasmic reticulum, has recently been proposed as a positive regulator of cardiomyocyte growth by promoting Ca2+ entry through the plasma membrane and the activation of Ca2+-mediated signaling pathways. We demonstrated that STIM1 silencing prevented the development of left ventricular hypertrophy (LVH) in rats after abdominal aortic banding. Our aim was to study the role of STIM1 during the transition from LVH to heart failure (HF). For experimental timeline, see figure. Transverse Aortic Constriction (TAC) was performed in C57Bl/6 mice. In vivo gene silencing was performed using recombinant Associated AdenoVirus 9 (AAV9). Mice were injected with saline or with AAV9 expressing shRNA control or against STIM1 (shSTIM1) (dose: 1e+11 viral genome), which decreased STIM1 cardiac expression by 70% compared to control. While cardiac parameters were similar between the TAC groups at weeks 3 and 6, shSTIM1 animals displayed a progressive and total reversion of LVH with LV walls thickness returning to values observed in sham mice at week 8. This reversion was associated with the development of significant LV dilation and severe contractile dysfunction, as assessed by echography. Hemodynamic analysis confirmed the altered contractile function and dilation of shSTIM1 animals. Immunohistochemistry showed a trend to more fibrosis. Despite hypertrophic stimuli, there was a significant reduction in cardiac myocytes cross-section area in shSTIM1-treated animals as compared to other TAC mice. This study showed that STIM1 is essential to maintain compensatory LVH and that its silencing accelerates the transition to HF.


2021 ◽  
Author(s):  
Sam Rivas-Dorado ◽  
Javier Ruiz ◽  
Ignacio Romeo

<p>Historical dike intrusions in the vicinity of volcanic edifices on Earth are known to produce swarms of seismic activity with cumulative seismic moments between 1·10<sup>12</sup> and 1·10<sup>20</sup> Nm, equivalent to moment magnitudes between 2 and 7. On Mars, long linear graben systems are likely to host giant dike complexes at depth, which possibly produced significant seismicity during their intrusion. Not only this, but dike intrusions are also candidates to produce crustal seismicity at present day, which may be detected during the lifespan of the InSight mission. In this work we infer the possible geometry of dikes underneath Cerberus Fossae, and make estimations of the energy released during their intrusion.</p><p>We used cross section area balancing on topographic profiles orthogonal to several of the Cerberus Fossae graben to estimate proxies for the geometry of the underlying dikes (aperture, height, depth, etc.). This technique has already been used to approximate dike properties at the nearby Elysium Fossae, with successful results. At Cerberus Fossae, the obtained dike aspect ratios are consistent with sublinear scaling, which is characteristic of fluid-induced fractures (as expected for dikes). These results support the presence of giant dikes underneath Cerberus, which may be up to 700 m thick, 140 km long, and have heights of up to 20 km.</p><p>Additionally, we used the inferred geometries and assumptions about the host rock mechanical properties to estimate various energy quantities related to dike intrusion, and compared them with the energy releases in terrestrial diking episodes. Two calculations are of special interest; M<sub>d</sub>, the energy associated to dike inflation, and M<sub>s</sub>, an approximation to the cumulative seismic moment release. The obtained M<sub>d</sub> values are between 3.1·10<sup>20</sup> and 5.0·10<sup>21</sup> Nm, and are 1 to 2 orders of magnitude larger than the equivalent moments in terrestrial events. M<sub>s</sub> was calculated from M<sub>d</sub> with two key assumptions; 1) that all aseismic energy was released by the dike, and 2) values of seismic efficiency (the percentage of seismic relative to the total energy released) based on terrestrial examples. The obtained M<sub>s</sub> are between 6.3·10<sup>19</sup> and 2.2·10<sup>21</sup> Nm, which are equivalent to moment magnitudes of 6.5 and 7.9. These are comparable to, albeit slightly larger than, the cumulative moments of some of the largest terrestrial diking events, such as the first episode in the Manda-Hararo sequence (Ethiopia, 2005, M<sub>s </sub>= 6.2) or the Miyake-jima event (Japan, 2000, M<sub>s </sub>= 6.8).</p><p>The Elysium volcanic province is thought to have been active until very recent times, and possibly even at present day. If this is the case, then intrusions in the lower size of the spectrum investigated at Cerberus, and smaller-sized events, may be detected by InSight as a series of crustal seismic events with cumulative moment magnitudes <6. Further research is needed to fully assess the validity of the comparisons between terrestrial and Martian events, and the possible energy releases of dike-induced marsquakes.</p>


Sign in / Sign up

Export Citation Format

Share Document