Extratropical Transition and Re-Intensification of Typhoon Toraji (2001): Large-Scale Circulations, Structural Characteristics, and Mechanism Analysis

2018 ◽  
Vol 17 (3) ◽  
pp. 461-476 ◽  
Author(s):  
Xiande Zhu ◽  
Lixin Wu ◽  
Qi Wang
2021 ◽  
Vol 7 (1) ◽  
pp. 47-54
Author(s):  
Jinjie Lin ◽  
Yong Li ◽  
Sijia Hu ◽  
Qianyi Liu ◽  
Jing Zhang ◽  
...  

2018 ◽  
Vol 146 (12) ◽  
pp. 4279-4302 ◽  
Author(s):  
Alex M. Kowaleski ◽  
Jenni L. Evans

Abstract An ensemble of 72 Weather Research and Forecasting (WRF) Model simulations is evaluated to examine the relationship between the track of Hurricane Sandy (2012) and its structural evolution. Initial and boundary conditions are obtained from ECMWF and GEFS ensemble forecasts initialized at 0000 UTC 25 October. The 5-day WRF simulations are initialized at 0000 UTC 27 October, 48 h into the global model forecasts. Tracks and cyclone phase space (CPS) paths from the 72 simulations are partitioned into 6 clusters using regression mixture models; results from the 4 most populous track clusters are examined. The four analyzed clusters vary in mean landfall location from southern New Jersey to Maine. Extratropical transition timing is the clearest difference among clusters; more eastward clusters show later Sandy–midlatitude trough interaction, warm seclusion formation, and extratropical transition completion. However, the intercluster variability is much smaller when examined relative to the landfall time of each simulation. In each cluster, a short-lived warm seclusion forms and contracts through landfall while lower-tropospheric potential vorticity concentrates at small radii. Despite the large-scale similarity among the clusters, relevant intercluster differences in landfall-relative extratropical transition are observed. In the easternmost cluster the Sandy–trough interaction is least intense and the warm seclusion decays the most by landfall. In the second most eastward cluster Sandy retains the most intact warm seclusion at landfall because of a slightly later (relative to landfall) and weaker trough interaction compared to the two most westward clusters. Nevertheless, the remarkably similar large-scale evolution of Sandy among the four clusters indicates the high predictability of Sandy’s warm seclusion extratropical transition before landfall.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 504 ◽  
Author(s):  
Siyi Huang ◽  
Ziyun You ◽  
Yanting Jiang ◽  
Fuxiang Zhang ◽  
Kaiyang Liu ◽  
...  

Owing to their peculiar structural characteristics and potential applications in various fields, the ultrathin MoS2 nanosheets, a typical two-dimensional material, have attracted numerous attentions. In this paper, a hybrid strategy with combination of quenching process and liquid-based exfoliation was employed to fabricate the ultrathin MoS2 nanosheets (MoS2 NS). The obtained MoS2 NS still maintained hexagonal phase (2H-MoS2) and exhibited evident thin layer-structure (1–2 layers) with inconspicuous wrinkle. Besides, the MoS2 NS dispersion showed excellent stability (over 60 days) and high concentration (0.65 ± 0.04 mg mL−1). The MoS2 NS dispersion also displayed evident optical properties, with two characteristic peaks at 615 and 670 nm, and could be quantitatively analyzed with the absorbance at 615 nm in the range of 0.01–0.5 mg mL−1. The adsorption experiments showed that the as-prepared MoS2 NS also exhibited remarkable adsorption performance on the dyes (344.8 and 123.5 mg g−1 of qm for methylene blue and methyl orange, respectively) and heavy metals (185.2, 169.5, and 70.4 mg g−1 of qm for Cd2+, Cu2+, and Ag+). During the adsorption, the main adsorption mechanisms involved the synergism of physical hole-filling effects and electrostatic interactions. This work provided an effective way for the large-scale fabrication of the two-dimensional nanosheets of transition metal dichalcogenides (TMDs) by liquid exfoliation.


1986 ◽  
Vol 163 ◽  
pp. 227-256 ◽  
Author(s):  
F. O. Thomas ◽  
V. W. Goldschmidt

An experimental study of the developing structural characteristics of a two-dimensional jet in an extremely quiet environment was performed. The jet, at an exit Reynolds number of 6000 and with fluctuation intensity under 0.2% at the mouth, was operated within a large anechoic room. Measurements of energy spectra, fluctuation phase angles and two-dimensionality led to the inference of structural patterns in the flow. These patterns are initially characterized by relatively strong symmetric modes exhibiting limited two-dimensionality and oriented parallel to the mouth of the jet. Subsequent downstream evolution led to the formation of an antisymmetric pattern beyond the jet potential core and the associated development of extended structures possessing a definite large lateral inclination. The results of this work suggest a developing large-scale structural pattern more complicated than previously supposed.


2020 ◽  
Vol 12 (6) ◽  
pp. 2177
Author(s):  
Jun-Ho Huh ◽  
Jimin Hwa ◽  
Yeong-Seok Seo

A Hierarchical Subsystem Decomposition (HSD) is of great help in understanding large-scale software systems from the software architecture level. However, due to the lack of software architecture management, HSD documentations are often outdated, or they disappear in the course of repeated changes of a software system. Thus, in this paper, we propose a new approach for recovering HSD according to the intended design criteria based on a genetic algorithm to find an optimal solution. Experiments are performed to evaluate the proposed approach using two open source software systems with the 14 fitness functions of the genetic algorithm (GA). The HSDs recovered by our approach have different structural characteristics according to objectives. In the analysis on our GA operators, crossover contributes to a relatively large improvement in the early phase of a search. Mutation renders small-scale improvement in the whole search. Our GA is compared with a Hill-Climbing algorithm (HC) implemented by our GA operators. Although it is still in the primitive stage, our GA leads to higher-quality HSDs than HC. The experimental results indicate that the proposed approach delivers better performance than the existing approach.


2009 ◽  
Vol 18 (7) ◽  
pp. 791 ◽  
Author(s):  
Leda N. Kobziar ◽  
Joe R. McBride ◽  
Scott L. Stephens

Plantations are the most common means of reforestation following stand-replacing wildfires. As wildfires continue to increase in size and severity as a result of fire suppression or climate change, establishment of plantations will likely also increase. Plantations’ structural characteristics, including dense, uniform spacing and abundant ladder fuels, present significant wildfire hazards. Large-scale fuels reduction techniques may be necessary to reduce potential fire behavior in plantations and to protect surrounding forests. In the present study, four different manipulations aimed at reducing potential fire behavior in a Sierra Nevada pine plantation are compared. The treatments include: mechanical shredding, or mastication, of understorey vegetation and small trees; mastication followed by prescribed fire; fire alone; and controls. Fire behavior modeling shows that mastication is detrimental whereas prescribed fire is effective in reducing potential fire behavior at moderate to extreme weather conditions. Predicted fire behavior was compared with actual values from the prescribed burns in an effort to explore the limitations of fire modeling. Fire behavior predictions were similar to field observations in the more structurally homogeneous stands, but differed greatly where mastication created forest openings and patchy fuels distributions. In contrast to natural stands, the homogeneity of pine plantations make the results of the present work applicable to other regions such as the south-eastern US, where similar fuels reduction techniques are used to increase fire-resistance and stand resilience.


2020 ◽  
Vol 71 (9) ◽  
pp. 2701-2712
Author(s):  
Yumei Dong ◽  
Maofeng Jing ◽  
Danyu Shen ◽  
Chenyang Wang ◽  
Meiqian Zhang ◽  
...  

Abstract The mirid bug Apolygus lucorum has become a major agricultural pest since the large-scale cultivation of Bt-cotton. It was assumed that A. lucorum, similarly to other phloem sap insects, could secrete saliva that contains effector proteins into plant interfaces to perturb host cellular processes during feeding. However, the secreted effectors of A. lucorum are still uncharacterized and unstudied. In this study, 1878 putative secreted proteins were identified from the transcriptome of A. lucorum, which either had homology with published aphid effectors or shared common features with plant pathogens and insect effectors. One hundred and seventy-two candidate effectors were used for cell death-inducing/suppressing assays, and a putative salivary gland effector, Apolygus lucorum cell death inhibitor 6 (Al6), was characterized. The mRNAs of Al6 were enriched at feeding stages (nymph and adult) and, in particular, in salivary glands. Moreover, we revealed that the secreted Al6 encoded an active glutathione peroxidase that reduced reactive oxygen species (ROS) accumulation induced by INF1 or Flg22. Expression of the Al6 gene in planta altered insect feeding behavior and promoted plant pathogen infections. Inhibition of cell death and enhanced plant susceptibility to insect and pathogens are dependent on glutathione peroxidase activity of Al6. Thus, this study shows that a candidate salivary gland effector, Al6, functions as a glutathione peroxidase and suppresses ROS induced by pathogen-associated molecular pattern to inhibit pattern-triggered immunity (PTI)-induced cell death. The identification and molecular mechanism analysis of the Al6 candidate effector in A. lucorum will provide new insight into the molecular mechanisms of insect–plant interactions.


2017 ◽  
Vol 26 (4) ◽  
pp. 458-470 ◽  
Author(s):  
Jungwon Yeo ◽  
Louise K. Comfort

Purpose The purpose of this paper is to focus on the large-scale flood response coordination across sectors and jurisdictions, investigating the characteristics and gaps of the 2011 Thailand flood response operations. Design/methodology/approach The large-scale flood response coordination was measured as an inter-organizational network. An extensive content analysis of news reports was conducted to identify the participating organizations and relationships among them that emerged during the initial flood response operations. Social network analysis was used to examine the patterns and gaps of coordination among the organizations. Findings The research identified three major gaps that might weaken the response coordination. First, the coordination structure was highly fragmented with many isolated actors. Second, the benefit of inter-sector relationships was not well leveraged in the system due to weak reciprocal relationships across sectors. Third, provincial level organizations did not serve as a strong liaison between local actors (cities) and national actors. Practical implications Based on the findings, the research offers suggestions to improve the performance of response coordination in recurring flood disasters. Originality/value This study is distinctive in its examination of structural characteristics of large-scale, inter-sector and multi-jurisdictional flood response coordination in Thailand. Previous studies have explored how citizens were organized and responded to flood disasters at the local level, and measured indicators or causes of response resilience at the provincial level system. Yet, studies examining the patterns of coordination structure among response organizations across all affected-jurisdictional authorities and sectors have been lacking.


2017 ◽  
Vol 24 (s3) ◽  
pp. 4-11 ◽  
Author(s):  
Jie Zhao ◽  
Lingyun Bao ◽  
Guixuan Wang

Abstract In an artificial island construction project based on the large-scale marine reclamation land, the soil settlement is a key to affect the late safe operation of the whole field. To analyze the factors of the soil settlement in a marine reclamation project, the SEM method in the soil micro-structural analysis method is used to test and study six soil samples such as the representative silt, mucky silty clay, silty clay and clay in the area. The structural characteristics that affect the soil settlement are obtained by observing the SEM charts at different depths. By combining numerical calculation method of Terzaghi’s one-dimensional and Biot’s two-dimensional consolidation theory, the one-dimensional and two-dimensional creep models are established and the numerical calculation results of two consolidation theories are compared in order to predict the maximum settlement of the soils 100 years after completion. The analysis results indicate that the micro-structural characteristics are the essential factor to affect the settlement in this area. Based on numerical analysis of one-dimensional and two-dimensional settlement, the settlement law and trend obtained by two numerical analysis method is similar. The analysis of this paper can provide reference and guidance to the project related to the marine reclamation land.


Sign in / Sign up

Export Citation Format

Share Document