Amelioration of Cd-Induced Oxidative Stress, MT Gene Expression, and Immune Damage by Vitamin C in Grass Carp Kidney Cells

2019 ◽  
Vol 194 (2) ◽  
pp. 552-559
Author(s):  
Yulin Yin ◽  
Peijun Zhang ◽  
Jia Liu ◽  
Nan Wang ◽  
Xinchi Shang ◽  
...  
Author(s):  
Pikash Pratim Maity ◽  
Moumita Dash ◽  
Arindam Dey ◽  
Moulima Maity ◽  
Sandip Chattopadhyay

2018 ◽  
Vol 24 (4) ◽  
pp. 273-279
Author(s):  
Parivash Piraki ◽  
Ahmad Hemmatfar ◽  
Mohammad Ali Samavati Sharif ◽  
Naser Behpour

Background: The main purpose of the present study was to assess the effects of exhaustive swimming with the consumption of a vitamin C supplement on indices of myocardial oxidative stress and gene expression related to angiogenesis. Methods: Wistar rats were randomly divided into six groups of normal (C), 100 and 200 mg/kg of vitamin C, (VC100 and VC200), exercise with 100 and 200 mg/kg of vitamin C (Ex+VC100 and Ex+VC200) and exercise without treatment (Ex). Finally, the serum activity of serum creatine phosphokinase (CK) and lactate dehydrogenase (LDH) and heart tissue oxidant/antioxidant parameters, besides gene expression of Vascular endothelial growth factor-B (VEGF-B), angiopoietin 1 (ANGPT-1) and matrix metalloproteinases 2 (MMP-2) was measured. Results: Significant increase in LDH level was seen in group Ex which was remarkably attenuated in group Ex+VC200 (p<0.001). The tissue oxidative stress was observed in group Ex where daily intake of vitamin C could remarkably regulate this property (p<0.01). Vitamin C could ameliorate significant upper gene expression of VEGF-B and MMP-2 remarkably (p<0.05). Conclusion: Oxidative condition in myocardial besides over expression of MMP-2, could be concluded as a detrimental condition resulting from exhaustive swimming that continued by the proteolytic release of CK and LDH from the muscle. Upper gene expression of VEGF-B and MMP-2 besides no changes of ANGPT-1 can be concluded as an early stage of angiogenesis. All these events were somehow attenuated by vitamin C which confirmed its beneficial effects as an antioxidant and the role of oxidation properties in the regulation of angiogenesis.


2019 ◽  
Vol 8 (2) ◽  
pp. 146-152 ◽  
Author(s):  
Ali Nouri ◽  
Esfandiar Heidarian

Introduction: Diclofenac (DIC), a phenylacetic acid compound which belongs to nonsteroidal anti-inflammatory drugs (NSAIDs), is generally used for the treatment of various diseases such as rheumatoid arthritis, ankylosing spondylitis, acute muscle pain conditions and osteoarthritis. Overdose of DIC can lead to renal injuries in both experimental animal and human. Our research was done to assess the protective role of silymarin on renal damage induced by DIC in rats. Methods: Thirty-two Wistar rats were assigned to four groups (n=8/group). Group 1 was control group; animals in group 2 were administrated DIC; Groups 3 and 4 administrated DIC plus silymarin with doses of 100 mg/kg and 200 mg/kg, orally (p.o), respectively. Various biochemical, molecular, and histological parameters were evaluated in serum and tissue homogenate. Results: In the second group, the levels of kidney catalase (CAT), vitamin C and superoxide dismutase (SOD) remarkably reduced (P < 0.05) relative to the control group. Also, urea, creatinine (Cr), malondialdehyde (MDA), serum tumor necrosis factor-α (TNF-α) and gene expression of TNF-α in this group were noticeably elevated (P < 0.05) relative to the control group. Treatment with silymarin caused a remarkable elevation (P < 0.05) in vitamin C, SOD, CAT and a remarkable reduction (P < 0.05) in the content of MDA, urea, Cr, TNF-α gene expression and serum TNF-α in comparison with second group. Histological injuries were also ameliorated by silymarin administration. Conclusion: The results confirm that silymarin has an ameliorative role against renal damage and oxidative stress induced by DIC in male rats.


2018 ◽  
Vol 33 (8) ◽  
pp. 703-712 ◽  
Author(s):  
Jessica Bonucci ◽  
Alfredo Gragnani ◽  
Marcelo Moraes Trincado ◽  
Victor Vincentin ◽  
Silvana Aparecida Alves Correa ◽  
...  

2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


Sign in / Sign up

Export Citation Format

Share Document