Pharmacological Modulation of TRPM2 Channels via PARP Pathway Leads to Neuroprotection in MPTP-induced Parkinson’s Disease in Sprague Dawley Rats

Author(s):  
Bhupesh Vaidya ◽  
Harpinder Kaur ◽  
Pavan Thapak ◽  
Shyam Sunder Sharma ◽  
Jitendra Narain Singh
2021 ◽  
Author(s):  
Bhupesh Vaidya ◽  
Harpinder Kaur ◽  
Pavan Thapak ◽  
Shyam Sunder Sharma ◽  
Jitendra N Singh

Abstract Transient receptor potential melastatin-2 (TRPM2) channels are cation channels activated by oxidative stress and adenosine di-phosphate ribose (ADPR). Role of TRPM2 channels has been postulated in several neurological disorders, but, it has not been explored in animal models of Parkinson’s disease (PD). Thus, the role of TRPM2 and its associated poly (ADP-ribose) polymerase (PARP) signalling pathways were investigated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model using TRPM2 inhibitor, 2-aminoethyl diphenyl borinate (2-APB) and PARP inhibitor, N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ-34). PD was induced by using a bilateral intranigral administration of MPTP in Sprague-Dawley rats, and different parameters were evaluated. An increase in the oxidative stress was observed, leading to the locomotor and cognitive deficits in the PD rats. PD rats also showed an increased TRPM2 expression in striatum and mid brain accompanied by reduced expression of tyrosine-hydroxylase (TH) in comparison to sham animals. Intraperitoneal administration of 2-aminoethyl diphenyl borinate (2-APB) and N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ-34) led to an improvement in the locomotor and cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and an increase in TH levels in striatum and mid brain. In addition, these pharmacological interventions also led to a decrease in the expression of TRPM2 in PD in striatum and mid brain. Our results provide a rationale for the development of potent pharmacological agents targeting TRPM2-PARP pathway to provide therapeutic benefits for the treatment of neurological disease like PD.


2018 ◽  
Vol 38 (2) ◽  
pp. 173-184 ◽  
Author(s):  
EK El-Sayed ◽  
AAE Ahmed ◽  
EM El Morsy ◽  
S Nofal

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease after Alzheimer’s disease, characterized by loss of dopaminergic neurons in substantia nigra pars compacta, accompanied by motor and nonmotor symptoms. The neuropathological hallmarks of PD are well reported, but the etiology of the disease is still undefined; several studies assume that oxidative stress, mitochondrial defects, and neuroinflammation play vital roles in the progress of the disease. The current study was established to investigate the neuroprotective effect of agmatine on a rotenone (ROT)-induced experimental model of PD. Adult male Sprague Dawley rats were subcutaneously injected with ROT at a dose of 2 mg/kg body weight for 35 days. Agmatine was injected intraperitoneally at 50 and 100 mg/kg body weight, 1 h prior to ROT administration. ROT-treated rats that received agmatine showed better performance on beam walking and an elevated number of rears within the cylinder test. In addition, agmatine reduced midbrain malondialdehyde as an indication of lipid peroxidation, pro-inflammatory cytokines including tumor necrosis factor alpha and interleukin-1β, and glial fibrillary acidic protein. Moreover, agmatine was responsible for preventing loss of tyrosine hydroxylase-positive neurons. In conclusion, our study showed that agmatine possesses a dose-dependent neuroprotective effect through its antioxidant and anti-inflammatory activities. These findings need further clinical investigations of agmatine as a promising neuroprotective agent for the future treatment of PD.


Metabolites ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 31 ◽  
Author(s):  
Anuri Shah ◽  
Pei Han ◽  
Mung-Yee Wong ◽  
Raymond Chang ◽  
Cristina Legido-Quigley

Introduction: Parkinson’s disease (PD) is the second most common neurodegenerative disorder, without any widely available curative therapy. Metabolomics is a powerful tool which can be used to identify unexpected pathway-related disease progression and pathophysiological mechanisms. In this study, metabolomics in brain, plasma and liver was investigated in an experimental PD model, to discover small molecules that are associated with dopaminergic cell loss. Methods: Sprague Dawley (SD) rats were injected unilaterally with 6-hydroxydopamine (6-OHDA) or saline for the vehicle control group into the medial forebrain bundle (MFB) to induce loss of dopaminergic neurons in the substantia nigra pars compacta. Plasma, midbrain and liver samples were collected for metabolic profiling. Multivariate and univariate analyses revealed metabolites that were altered in the PD group. Results: In plasma, palmitic acid (q = 3.72 × 10−2, FC = 1.81) and stearic acid (q = 3.84 × 10−2, FC = 2.15), were found to be increased in the PD group. Palmitic acid (q = 3.5 × 10−2) and stearic acid (q = 2.7 × 10−2) correlated with test scores indicative of motor dysfunction. Monopalmitin (q = 4.8 × 10−2, FC = −11.7), monostearin (q = 3.72 × 10−2, FC = −15.1) and myo-inositol (q = 3.81 × 10−2, FC = −3.32), were reduced in the midbrain. The liver did not have altered levels of these molecules. Conclusion: Our results show that saturated free fatty acids, their monoglycerides and myo-inositol metabolism in the midbrain and enteric circulation are associated with 6-OHDA-induced PD pathology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yumin Wang ◽  
Luyan Gao ◽  
Jichao Chen ◽  
Qiang Li ◽  
Liang Huo ◽  
...  

Parkinson’s disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1420
Author(s):  
Yun-Ting Jhao ◽  
Chuang-Hsin Chiu ◽  
Chien-Fu F. Chen ◽  
Ta-Kai Chou ◽  
Yi-Wen Lin ◽  
...  

Intra-striatal transplantation of fetal ventral mesencephalic (VM) tissue has a therapeutic effect on patients with Parkinson’s disease (PD). Sertoli cells (SCs) possess immune-modulatory properties that benefit transplantation. We hypothesized that co-graft of SCs with VM tissue can attenuate rejection. Hemi-parkinsonian rats were generated by injecting 6-hydroxydopamine into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats or pigs (rVM or pVM), with/without a co-graft of SCs (rVM+SCs or pVM+SCs). Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and small animal-positron emission tomography (PET) coupled with [18F] DOPA or [18F] FE-PE2I, respectively. Immunohistochemistry (IHC) examination was used to determine the survival of the grafted dopaminergic neurons in the striatum and to investigate immune-modulatory effects of SCs. The results showed that the rVM+SCs and pVM+SCs groups had significantly improved drug-induced rotational behavior compared with the VM alone groups. PET revealed a significant increase in specific uptake ratios (SURs) of [18F] DOPA and [18F] FE-PE2I in the grafted striatum of the rVM+SCs and pVM+SCs groups as compared to that of the rVM and pVM groups. SC and VM tissue co-graft led to better dopaminergic (DA) cell survival. The co-grafted groups exhibited lower populations of T-cells and activated microglia compared to the groups without SCs. Our results suggest that co-graft of SCs benefit both xeno- and allo-transplantation of VM tissue in a PD rat model. Use of SCs enhanced the survival of the grafted dopaminergic neurons and improved functional recovery. The enhancement may in part be attributable to the immune-modulatory properties of SCs. In addition, [18F]DOPA and [18F]FE-PE2I coupled with PET may provide a feasible method for in vivo evaluation of the functional integrity of the grafted DA cell in parkinsonian rats.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Chun-Yi Wu ◽  
Yang-Yi Chen ◽  
Jia-Jia Lin ◽  
Jui-Ping Li ◽  
Jen-Kun Chen ◽  
...  

Abstract Purpose The inflammation reaction in the brain may stimulate damage repair or possibly lead to secondary brain injury. It is often associated with activated microglia, which would overexpress 18-kDa translocator protein (TSPO). In this study, we successfully developed a new TSPO radioligand, [18F]-2-(4-fluoro-2-(p-tolyloxy)phenyl)-1,2-dihydroisoquinolin-3(4H)-one ([18F]FTPQ), and evaluate its potential to noninvasively detect brain changes in a rat model of Parkinson’s disease (PD). Procedures The precursor (8) for [18F]FTPQ preparation was synthesized via six steps. Radiofluorination was carried out in the presence of a copper catalyst, and the crude product was purified by high-performance liquid chromatography (HPLC) to give the desired [18F]FTPQ. The rat model of PD was established by the injection of 6-OHDA into the right hemisphere of male 8-week-old Sprague-Dawley rats. MicroPET/CT imaging and immunohistochemistry (IHC) were performed to characterize the biological properties of [18F]FTPQ. Results The overall chemical yield for the precursor (8) was around 14% after multi-step synthesis. The radiofluorination efficiency of [18F]FTPQ was 60 ± 5%. After HPLC purification, the radiochemical purity was higher than 98%. The overall radiochemical yield was approximately 19%. The microPET/CT images demonstrated apparent striatum accumulation in the brains of PD rats at the first 30 min after intravenous injection of [18F]FTPQ. Besides, longitudinal imaging found the uptake of [18F]FTPQ in the brain may reflect the severity of PD. The radioactivity accumulated in the ipsilateral hemisphere of PD rats at 1, 2, and 3 weeks after 6-OHDA administration was 1.84 ± 0.26, 3.43 ± 0.45, and 5.58 ± 0.72%ID/mL, respectively. IHC revealed that an accumulation of microglia/macrophages and astrocytes in the 6-OHDA-injected hemisphere. Conclusions In this study, we have successfully synthesized [18F]FTPQ with acceptable radiochemical yield and demonstrated the feasibility of [18F]FTPQ as a TSPO radioligand for the noninvasive monitoring the disease progression of PD.


2020 ◽  
Vol 711 ◽  
pp. 135184
Author(s):  
Fenfen Ji ◽  
Zhou Zhu ◽  
Mengtao Zhang ◽  
Huan Zhang ◽  
Lin Zhu ◽  
...  

2004 ◽  
Vol 189 (2) ◽  
pp. 369-379 ◽  
Author(s):  
A PRIORI ◽  
G FOFFANI ◽  
A PESENTI ◽  
F TAMMA ◽  
A BIANCHI ◽  
...  

2017 ◽  
Vol 06 (02) ◽  
Author(s):  
Afonso Caricati Neto ◽  
Fúlvio Alexandre Scorza ◽  
Carla Alessandra Scorza ◽  
Roberta Monterazzo Cysneiros ◽  
Francisco Sandro Menezes Rodrigues ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document