Role of physical oceanography parameters in ocean’s biological response with the passage of cyclone Titli in the Bay of Bengal

2021 ◽  
Vol 130 (3) ◽  
Author(s):  
K Vijay Prakash ◽  
Ch S Geetha Vimala ◽  
P V Nagamani ◽  
N K Baranval ◽  
Shivashankar Manche ◽  
...  
2021 ◽  
Author(s):  
Fabrice Cognasse ◽  
Kathryn Hally ◽  
Sebastien Fauteux-Daniel ◽  
Marie-Ange Eyraud ◽  
Charles-Antoine Arthaud ◽  
...  

AbstractAside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.


2021 ◽  
Vol 22 (14) ◽  
pp. 7429
Author(s):  
Matthew Martin ◽  
Mengyao Sun ◽  
Aishat Motolani ◽  
Tao Lu

Over the last several decades, colorectal cancer (CRC) has been one of the most prevalent cancers. While significant progress has been made in both diagnostic screening and therapeutic approaches, a large knowledge gap still remains regarding the early identification and treatment of CRC. Specifically, identification of CRC biomarkers that can help with the creation of targeted therapies as well as increasing the ability for clinicians to predict the biological response of a patient to therapeutics, is of particular importance. This review provides an overview of CRC and its progression stages, as well as the basic types of CRC biomarkers. We then lay out the synopsis of signaling pathways related to CRC, and further highlight the pivotal and multifaceted role of nuclear factor (NF) κB signaling in CRC. Particularly, we bring forth knowledge regarding the tumor microenvironment (TME) in CRC, and its complex interaction with cancer cells. We also provide examples of NF-κB signaling-related CRC biomarkers, and ongoing efforts made at targeting NF-κB signaling in CRC treatment. We conclude and anticipate that with more emerging novel regulators of the NF-κB pathway being discovered, together with their in-depth characterization and the integration of large groups of genomic, transcriptomic and proteomic data, the day of successful development of more ideal NF-κB inhibitors is fast approaching.


2008 ◽  
Vol 117 (4) ◽  
pp. 429-447 ◽  
Author(s):  
M. K. Sharada ◽  
P. S. Swathi ◽  
K. S. Yajnik ◽  
C. Kalyani Devasena

1970 ◽  
Vol 18 (1) ◽  
pp. 60-65
Author(s):  
Md Azizul Haque ◽  
ARM Saifuddin Ekram ◽  
Quazi Tarikul Islam

Rheumatoid arthritis is a chronic disease with the potential to cause substantial joint damage and disability. During the past 10 years, improved understanding of the pathophysiology of rheumatoid arthritis has led to several key changes in the approach to therapy. Most important of that is the development of some biological agents interfering with the activity of several important cytokines. Infliximab, etanarcept, and adalimumab are TNF blockers, anakinra is IL-1 receptor antagonist, and rituximab is anti CD-20 monoclonal antibody. These newer agents proved to be useful for alleviating symptoms and slowing the disease progression in the patients with RA who have failed to respond to conventional DMARDs.   doi: 10.3329/taj.v18i1.3309 TAJ 2005; 18(1): 60-65


2016 ◽  
Vol 4 (Special-Issue-October) ◽  
pp. 37-47
Author(s):  
Ana Barros ◽  
Vitoria Bell ◽  
Jorge Ferrão ◽  
Vittorio Calabrese ◽  
Tito Fernandes

Mushrooms have attracted market attention because they are a potential source of bioactive compounds able to perform several functions in organisms with benefits for the health of the consumer. Cultivation processes vary according a) industrial fermentation - in large vats to produce extracted form of mushrooms or b) closed cultivation system - individually grown in jars on an aseptic “substrate” with controlled lighting and irrigation to produce a biomass form of mushrooms. Biomass is the mycelium with primordia (young fruiting body - before the mushroom blooms) containing all the nutrients and active compounds, including β-glucans, enzymes and secondary metabolites. The classification of mushroom biomass varies according to the presentation; the biomass can be classified as a “food” if in powder form or, classified as a “dietary supplement” in tablet form. While tablet mushroom biomass is considered a dietary supplement, mushroom extracts are designated pharmaceutical compounds, pharmanutrients or nutraceuticals. Here we illustrate the difference between mushrooms in the biomass and extract forms, the similarities and differences on its content on enzymes, secondary metabolites and on β-glucans, as a soluble and fermentable fibre. Of particular note is the rich enzyme activity in the biomass form of mushrooms. Such activity includes enzymes that prevent oxidative stress (superoxide dismutase), enzymes that prevent cellular growth (protease, glucoamylase) and enzymes that promote detoxification (cytochrome P-450, peroxidase, glucose-2-oxidase). β-glucans have been proposed to act as “biological response modifiers” based on their effects on the immune system, and its role in the prevention and treatment of various metabolic syndrome-linked diseases. This review focuses also on some described health-promoting potential of mushroom biomass, all through immunomodulation. The role of intestinal microbiota is enhanced.


Author(s):  
Asli Aykac ◽  
Rasime Kalkan

AbstractPosttraumatic stress disorder (PTSD) is a stress-related mental disorder and develops after exposure to life-threatening traumatic experiences. The risk factors of PTSD included genetic factors; alterations in hypothalamic–pituitary–adrenal (HPA) axis; neurotrophic, serotonergic, dopaminergic, and catecholaminergic systems; and a variety of environmental factors, such as war, accident, natural disaster, pandemic, physical, or sexual abuse, that cause stress or trauma in individuals. To be able to understand the molecular background of PTSD, rodent animal models are widely used by researchers. When looking for a solution for PTSD, it is important to consider preexisting genetic risk factors and physiological, molecular, and biochemical processes caused by trauma that may cause susceptibility to this disorder. In studies, it is reported that epigenetic mechanisms play important roles in the biological response affected by environmental factors, as well as the task of programming cell identity. In this article, we provided an overview of the role of epigenetic modifications in understanding the biology of PTSD. We also summarized the data from animal studies and their importance during the investigation of PTSD. This study shed light on the epigenetic background of stress and PTSD.


Sign in / Sign up

Export Citation Format

Share Document