Estimating landslide occurrence via small watershed method with relevance vector machine

2019 ◽  
Vol 13 (2) ◽  
pp. 249-260
Author(s):  
Kuo-Wei Liao ◽  
Nhat-Duc Hoang ◽  
Shih-Chun Chang
2008 ◽  
Vol 6 (2) ◽  
pp. 113-126 ◽  
Author(s):  
Yoshitaka SUGIMOTO ◽  
Yukio KOMAI ◽  
Takao KUNIMATSU

2018 ◽  
Vol 11 (1) ◽  
pp. 57 ◽  
Author(s):  
Dieu Tien Bui ◽  
Himan Shahabi ◽  
Ataollah Shirzadi ◽  
Kamran Kamran Chapi ◽  
Nhat-Duc Hoang ◽  
...  

The authors wish to make the following corrections to this paper [...]


2019 ◽  
Vol 19 (4) ◽  
pp. 775-789 ◽  
Author(s):  
Elise Monsieurs ◽  
Olivier Dewitte ◽  
Alain Demoulin

Abstract. Rainfall threshold determination is a pressing issue in the landslide scientific community. While major improvements have been made towards more reproducible techniques for the identification of triggering conditions for landsliding, the now well-established rainfall intensity or event-duration thresholds for landsliding suffer from several limitations. Here, we propose a new approach of the frequentist method for threshold definition based on satellite-derived antecedent rainfall estimates directly coupled with landslide susceptibility data. Adopting a bootstrap statistical technique for the identification of threshold uncertainties at different exceedance probability levels, it results in thresholds expressed as AR = (α±Δα)⋅S(β±Δβ), where AR is antecedent rainfall (mm), S is landslide susceptibility, α and β are scaling parameters, and Δα and Δβ are their uncertainties. The main improvements of this approach consist in (1) using spatially continuous satellite rainfall data, (2) giving equal weight to rainfall characteristics and ground susceptibility factors in the definition of spatially varying rainfall thresholds, (3) proposing an exponential antecedent rainfall function that involves past daily rainfall in the exponent to account for the different lasting effect of large versus small rainfall, (4) quantitatively exploiting the lower parts of the cloud of data points, most meaningful for threshold estimation, and (5) merging the uncertainty on landslide date with the fit uncertainty in a single error estimation. We apply our approach in the western branch of the East African Rift based on landslides that occurred between 2001 and 2018, satellite rainfall estimates from the Tropical Rainfall Measurement Mission Multi-satellite Precipitation Analysis (TMPA 3B42 RT), and the continental-scale map of landslide susceptibility of Broeckx et al. (2018) and provide the first regional rainfall thresholds for landsliding in tropical Africa.


2021 ◽  
pp. 107754632110131
Author(s):  
Somaye Mohammadi ◽  
Abdolreza Ohadi ◽  
Mostafa Irannejad-Parizi

Promoting safe tires with low external rolling noise increases the environmental efficiency of road transport. Although tire builders have been striving to reduce emitted noise, the issue’s sophisticated nature has made it difficult. This article aims to make the problem straightforward, relying on recent significant improvements in statistical science. In this regard, the prediction ability of new methods in this field, including support vector machine, relevance vector machine, and convolutional neural network, along with the new architecture of the neural network is compared. Tire noise is measured under the coast-by condition. Two training strategies are proposed: extracting features from a tread pattern image and directly importing an image to the model. The relevance vector method, which is trained using the first strategy, has provided the most accurate results with an error of 0.62 dB(A) in predicting the total noise level. This precise model is used instead of experimentation to analyze the sensitivity of tire noise to its parameters using a small central composite design. The parametric study reveals striking tips for reducing noise, especially in terms of interactions between parameters that have not previously been shown. Finally, a novel two-stage approach for reducing noise by tread pattern optimization is proposed, inspired by two regression models derived from statistical investigation and variance analysis. Changes in tread pattern specifications of two case studies and their randomization have resulted in a reduction of 3.2 dB(A) for a high-noise tire and 0.4 dB(A) decrement for a quieter tire.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1540
Author(s):  
Qianqian Ji ◽  
Zhe Gao ◽  
Xingyao Li ◽  
Jian’en Gao ◽  
Gen’guang Zhang ◽  
...  

The Loess Hilly–Gully region (LHGR) is the most serious soil erosion area in the world. For the small watershed with high management in this area, the scientific problem that has been paid attention to in recent years is the impact of the land consolidation project on the erosion environment in the gully region. In this study, the 3D simulation method of vegetation, eroded sediment and pollutant transport was innovated based on the principles of erosion sediment dynamics and similarity theory, and the impacts of GLCP were analyzed on the erosion environment at different scales. The verification results show that the design method and the scale conversion relationship (geometric scale: λl = 100) were reasonable and could simulate the transport process on the complex underlying surface of a small watershed. Compared with untreated watersheds, a significant change was the current flood peak lagging behind the sediment peak. There were two important critical values of GLCP impact on the erosion environment. The erosion transport in HMSW had no change when the proportion was less than 0.85%, and increased obviously when it was greater than 3.3%. The above results have important theoretical and practical significance for watershed simulation and land-use management in HMSW.


2021 ◽  
Vol 9 (5) ◽  
pp. 538
Author(s):  
Jinwan Park ◽  
Jung-Sik Jeong

According to the statistics of maritime collision accidents over the last five years (2016–2020), 95% of the total maritime collision accidents are caused by human factors. Machine learning algorithms are an emerging approach in judging the risk of collision among vessels and supporting reliable decision-making prior to any behaviors for collision avoidance. As the result, it can be a good method to reduce errors caused by navigators’ carelessness. This article aims to propose an enhanced machine learning method to estimate ship collision risk and to support more reliable decision-making for ship collision risk. In order to estimate the ship collision risk, the conventional support vector machine (SVM) was applied. Regardless of the advantage of the SVM to resolve the uncertainty problem by using the collected ships’ parameters, it has inherent weak points. In this study, the relevance vector machine (RVM), which can present reliable probabilistic results based on Bayesian theory, was applied to estimate the collision risk. The proposed method was compared with the results of applying the SVM. It showed that the estimation model using RVM is more accurate and efficient than the model using SVM. We expect to support the reasonable decision-making of the navigator through more accurate risk estimation, thus allowing early evasive actions.


Author(s):  
Xiaoting Zhou ◽  
Weicheng Wu ◽  
Ziyu Lin ◽  
Guiliang Zhang ◽  
Renxiang Chen ◽  
...  

Landslides are one of the major geohazards threatening human society. The objective of this study was to conduct a landslide hazard susceptibility assessment for Ruijin, Jiangxi, China, and to provide technical support to the local government for implementing disaster reduction and prevention measures. Machine learning approaches, e.g., random forests (RFs) and support vector machines (SVMs) were employed and multiple geo-environmental factors such as land cover, NDVI, landform, rainfall, lithology, and proximity to faults, roads, and rivers, etc., were utilized to achieve our purposes. For categorical factors, three processing approaches were proposed: simple numerical labeling (SNL), weight assignment (WA)-based and frequency ratio (FR)-based. Then 19 geo-environmental factors were respectively converted into raster to constitute three 19-band datasets, i.e., DS1, DS2, and DS3 from three different processes. Then, 155 observed landslides that occurred in the past decades were vectorized, among which 70% were randomly selected to compose a training set (TS1) and the remaining 30% to form a validation set (VS1). A number of non-landslide (no-risk) samples distributed in the whole study area were identified in low slope (<1–3°) zones such as urban areas and croplands, and also added to the TS1 and VS1 in the same ratio. For comparison, we used the FR approach to identify the no-risk samples in both flat and non-flat areas, and merged them into the field-observed landslides to constitute another pair of training and validation sets (TS2 and VS2) using the same ratio of 7:3. The RF algorithm was applied to model the probability of the landslide occurrence using DS1, DS2, and DS3 as predictive variables and TS1 and TS2 for training to obtain the SNL-based, WA-based, and FR-based RF models, respectively. Verified against VS1 and VS2, the three models have similar overall accuracy (OA) and Kappa coefficient (KC), which are 89.61%, 91.47%, and 94.54%, and 0.7926, 0.8299, and 0.8908, respectively. All of them are much better than the three models obtained by SVM algorithm with OA of 81.79%, 82.86%, and 83%, and KC of 0.6337, 0.655, and 0.660. New case verification with the recent 26 landslide events of 2017–2020 revealed that the landslide susceptibility map from WA-based RF modeling was able to properly identify the high and very high susceptibility zones where 23 new landslides had occurred, and performed better than the SNL-based and FR-based RF modeling, though the latter has a slightly higher OA and KC. Hence, we concluded that all three RF models achieve reasonable risk prediction, but WA-based and FR-based RF modeling deserves a recommendation for application elsewhere. The results of this study may serve as reference for the local authorities in prevention and early warning of landslide hazards.


Sign in / Sign up

Export Citation Format

Share Document