scholarly journals Characterization of genetic diversity in chickpea using SSR markers, Start Codon Targeted Polymorphism (SCoT) and Conserved DNA-Derived Polymorphism (CDDP)

2015 ◽  
Vol 21 (3) ◽  
pp. 365-373 ◽  
Author(s):  
Zahra Hajibarat ◽  
Abbas Saidi ◽  
Zohreh Hajibarat ◽  
Reza Talebi
2014 ◽  
Vol 12 (3) ◽  
pp. 323-329 ◽  
Author(s):  
Guillermo Padilla ◽  
Rafel Socias i Company ◽  
Amando Ordás

In this study, 15 simple sequence repeat (SSR) markers were used for genetic diversity analysis of 45 almond accessions, which included 25 local cultivars from La Palma Island and three other commercial cultivars. A total of 110 amplification fragments were produced, with an average value of 7.9 alleles per locus. Twelve of the SSR markers can be considered as highly informative, with values of expected heterozygosity and power of discrimination above 0.5 and 0.8, respectively. Due to cases of synonymy and homonymy, 37 different genetic profiles were obtained, with the homonymy of the soft-shell varieties known as ‘Mollar’ being the most significant. Cluster analysis identified four groups within the accessions. One of these groups exclusively consisted of the two commercial cultivars ‘Guara’ and ‘Ferraduel’. The other commercial cultivar used in the study, ‘Desmayo Largueta’, was in a cluster with three cultivars from the same locality. The analysis of molecular variance revealed that the within-localities component accounts for most of the total variation, suggesting that La Palma almond cultivars did not originate independently in different parts of the island. The results of the study reveal the genetic singularity of La Palma almond cultivars and the genetic diversity among them.


Author(s):  
Narendra Singh Rajpoot ◽  
M. K. Tripathi ◽  
Sushma Tiwari ◽  
R. S. Tomar ◽  
V. S. Kandalkar

The genus Brassica is one of the most important oil seed crops in India with high degree of genetic diversity. In present study, genetic diversity was studied in forty germplasm lines and eight cultivars of Indian mustard using morphological traits and SSR markers. Morphological characters were taken for days to 50% flowering, days to maturity, plant height (cm), length of main raceme (cm), number of primary branches/plant, number of secondary branches/plant, number of silique per plant, number of seeds per silique, 1000 seed weight (g) and seed yield per plant (g). Total 50 SSR markers were used for characterization of these lines, out of which 7 SSR markers were highly polymorphic between all the germplasms of mustard. An UPGMA phonogram was constructed for all 48 Germplasms and the similarity coefficient ranged from 0.00 to 0.91. Number of alleles ranged from 3 to 4, genetic diversity ranged from 71% to 65% with average value of 67%, heterozygosity raged from 20 to 10% with average of 12% and PIC value for markers ranged from 0.65 to 0.59 with mean PIC value 0.61. All seven SSR primers showed PIC value above 0.5 (50%) indicating high genetic diversity in the studied plant material.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pooja Sihag ◽  
Vijeta Sagwal ◽  
Anuj Kumar ◽  
Priyanka Balyan ◽  
Reyazul Rouf Mir ◽  
...  

A large proportion of the Asian population fulfills their energy requirements from wheat (Triticum aestivum L.). Wheat quality and yield are critically affected by the terminal heat stress across the globe. It affects approximately 40% of the wheat-cultivating regions of the world. Therefore, there is a critical need to develop improved terminal heat-tolerant wheat varieties. Marker-assisted breeding with genic simple sequence repeats (SSR) markers have been used for developing terminal heat-tolerant wheat varieties; however, only few studies involved the use of microRNA (miRNA)-based SSR markers (miRNA-SSRs) in wheat, which were found as key players in various abiotic stresses. In the present study, we identified 104 heat-stress-responsive miRNAs reported in various crops. Out of these, 70 miRNA-SSR markers have been validated on a set of 20 terminal heat-tolerant and heat-susceptible wheat genotypes. Among these, only 19 miRNA-SSR markers were found to be polymorphic, which were further used to study the genetic diversity and population structure. The polymorphic miRNA-SSRs amplified 61 SSR loci with an average of 2.9 alleles per locus. The polymorphic information content (PIC) value of polymorphic miRNA-SSRs ranged from 0.10 to 0.87 with a mean value of 0.48. The dendrogram constructed using unweighted neighbor-joining method and population structure analysis clustered these 20 wheat genotypes into 3 clusters. The target genes of these miRNAs are involved either directly or indirectly in providing tolerance to heat stress. Furthermore, two polymorphic markers miR159c and miR165b were declared as very promising diagnostic markers, since these markers showed specific alleles and discriminated terminal heat-tolerant genotypes from the susceptible genotypes. Thus, these identified miRNA-SSR markers will prove useful in the characterization of wheat germplasm through the study of genetic diversity and population structural analysis and in wheat molecular breeding programs aimed at terminal heat tolerance of wheat varieties.


2021 ◽  
pp. 1-10
Author(s):  
Veluru Bhargav ◽  
Rajiv Kumar ◽  
Anuradha Sane ◽  
T. Manjunatha Rao ◽  
T. Usha Bharathi ◽  
...  

Abstract Understanding genetic diversity in target populations is of great importance in breeding and a prerequisite for association mapping of traits. In this study, 57 cross species simple sequence repeat (SSR) markers were screened for amplification in China aster. Twenty six polymorphic markers were used to estimate the genetic diversity in forty two China aster genotypes. The observed and expected heterozygosities within the genotypes were ranged from 0.00 to 0.80 and 0.17 to 0.50, respectively. Weighted Neighbor Joining method, grouped China aster genotypes into five major clusters which coincided for morphological traits mostly flower color and form, but not correlated for their geographical locations. The results suggested that, population may be useful for the genome-wide marker–trait association mapping. These set of cross species transferable SSR markers would enable the application of the SSR technique in China aster crop improvement.


2008 ◽  
Vol 21 (1) ◽  
pp. 01-06 ◽  
Author(s):  
A. K. M. Khorsheduzzaman ◽  
M. Z. Alam ◽  
M. M. Rahman ◽  
M. A. K. Mian ◽  
M. I. H. Mian ◽  
...  

Five brinjal (Solanum melongena L.) genotypes were selected for characterization using Simple Sequence Repeats (SSR) markers. All the genotypes showed considerable variation in respect of morphological, anatomical and biochemical aspects. For study of relatedness, plant genomic DNA was extracted by CTAB based method using 11 randomly selected primers produced from Calgene Inc. USA. The primers developed 22 bands through PCR amplification out of which 15 from 3 primers and were polymorphic. Genetic similarities of SSR profiles were estimated based on Jaccard’s coefficient value. The dendrogram generated two clusters and they were clearly distinct and separated from each other. Cluster-I consisted of genotypes TURBO and BL009; and cluster-II comprised of genotypes EG058, EG075 and ISD006. Genotype TURBO and BL009 were identified as the diverse genotype and showed a maximum of 17% dissimilarity from EG058, EG075 and ISD006. The similarity value ranged from 0.83 to 1.00 which indicated the presence of narrow range of genetic diversity at molecular level but have still a possibility of crossing among the genotypes of two clusters. The banding pattern of different genotypes could be utilized as reference for further comparisons.DOI: http://dx.doi.org/10.3329/bjpbg.v21i1.17041


2012 ◽  
Vol 137 (5) ◽  
pp. 302-310 ◽  
Author(s):  
María José Arismendi ◽  
Patricio Hinrichsen ◽  
Ruben Almada ◽  
Paula Pimentel ◽  
Manuel Pinto ◽  
...  

Stone fruit (Prunus L.) production in Chile covers ≈43,000 ha and includes a wide variety of soils and climates requiring a large diversity of rootstocks. The most commercially important rootstock cultivars are 26 genotypes from three different taxonomic groups belonging to the subgenera Amygdalus (L.) Benth. Hook. (peach group), Prunus Focke [= Prunophora (Neck.)] Focke (plum group), and Cerasus (Adans.) Focke (cherry group) with eight, seven, and 10 individuals, respectively. To determine their genetic diversity, characterization by microsatellite markers [simple sequence repeat (SSR)] was conducted. Of a total of 20 SSR markers evaluated, 12 generated amplified products that were consistent in the three taxonomic groups. The number of alleles per marker ranged from 18 for PSM-3 to four in CPPCT-002. Clustering analysis, by both traditional hierarchical and model-based approaches, indicate that all genotypes are clustered in their respective taxonomic groups, including the interspecific hybrids. Genetic diversity, measured as the average distances (expected heterozygosity) between individuals in the same cluster, was higher in Cerasus (0.78) followed by Prunus (0.72) and Amygdalus (0.64). Total number of alleles observed was 133, of which 14, 33, and 35 from six, 10, and 10 loci were unique for the peach, plum, and cherry rootstock groups, respectively. Alleles shared among peach/plum, plum/cherry, and peach/cherry rootstock genotypes were 13, 14, and 18 from nine, seven, and seven loci, respectively. Only six alleles from five loci were common to the three taxonomic groups. In addition, to develop a rootstock identification system based on SSR markers, a minimum set of three markers (PMS-3, BPPCT-037, and BPPCT-036) able to differentiate the 26 genotypes was identified. This study is the first step toward establishing a stone fruit rootstock breeding program in Chile.


Sign in / Sign up

Export Citation Format

Share Document