scholarly journals Kimberlites and Related Rocks: Tracers of the Mantle and Geodynamic Processes

2022 ◽  
Vol 98 (1) ◽  
pp. 143-143
Author(s):  
Ashutosh Pandey
Keyword(s):  
Geosciences ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 394
Author(s):  
Manuel Martín-Martín ◽  
Francesco Guerrera ◽  
Mario Tramontana

Four main unconformities (1–4) were recognized in the sedimentary record of the Cenozoic basins of the eastern External Betic Zone (SE, Spain). They are located at different stratigraphic levels, as follows: (1) Cretaceous-Paleogene boundary, even if this unconformity was also recorded at the early Paleocene (Murcia sector) and early Eocene (Alicante sector), (2) Eocene-Oligocene boundary, quite synchronous, in the whole considered area, (3) early Burdigalian, quite synchronous (recognized in the Murcia sector) and (4) Middle Tortonian (recognized in Murcia and Alicante sectors). These unconformities correspond to stratigraphic gaps of different temporal extensions and with different controls (tectonic or eustatic), which allowed recognizing minor sedimentary cycles in the Paleocene–Miocene time span. The Cenozoic marine sedimentation started over the oldest unconformity (i.e., the principal one), above the Mesozoic marine deposits. Paleocene-Eocene sedimentation shows numerous tectofacies (such as: turbidites, slumps, olistostromes, mega-olistostromes and pillow-beds) interpreted as related to an early, blind and deep-seated tectonic activity, acting in the more internal subdomains of the External Betic Zone as a result of the geodynamic processes related to the evolution of the westernmost branch of the Tethys. The second unconformity resulted from an Oligocene to Aquitanian sedimentary evolution in the Murcia Sector from marine realms to continental environments. This last time interval is characterized as the previous one by a gentle tectonic activity. On the other hand, the Miocene sedimentation was totally controlled by the development of superficial thrusts and/or strike-slip faults zones, both related to the regional geodynamic evolutionary framework linked to the Mediterranean opening. These strike-slip faults zones created subsidence areas (pull-apart basin-type) and affected the sedimentation lying above the third unconformity. By contrast, the subsidence areas were bounded by structural highs affected by thrusts and folds. After the third unconformity, the Burdigalian-Serravallian sedimentation occurred mainly in shallow- to deep-water marine environments (Tap Fm). During the Late Miocene, after the fourth unconformity, the activation of the strike-slip faults zones caused a shallow marine environment sedimentation in the Murcia sector and a continental (lacustrine and fluvial) deposition in the Alicante sector represented the latter, resulting in alluvial fan deposits. Furthermore, the location of these fans changed over time according to the activation of faults responsible for the tectonic rising of Triassic salt deposits, which fed the fan themselves.


2021 ◽  
Vol 356 ◽  
pp. 106104
Author(s):  
D.R. Mole ◽  
P.C. Thurston ◽  
J.H. Marsh ◽  
R.A. Stern ◽  
J.A. Ayer ◽  
...  

2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Yoshihisa Iio ◽  
Richard H. Sibson ◽  
Toru Takeshita ◽  
Takeshi Sagiya ◽  
Bunichiro Shibazaki ◽  
...  

2000 ◽  
Vol 325 (1-2) ◽  
pp. 1-21 ◽  
Author(s):  
Chi-Yue Huang ◽  
Peter B Yuan ◽  
Ching-Weei Lin ◽  
Tan K Wang ◽  
Chung-Pai Chang

2021 ◽  
pp. 228993
Author(s):  
Opeyemi Joshua Akinrinade ◽  
Chun-Feng Li ◽  
Ademolawa John Afelumo
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maoliang Zhang ◽  
Zhengfu Guo ◽  
Sheng Xu ◽  
Peter H. Barry ◽  
Yuji Sano ◽  
...  

AbstractThe episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.


Author(s):  
Yin Liu ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Kefa Zhou ◽  
Rongshe Li ◽  
...  

Carboniferous-Triassic magmatism in northern Qiangtang, central Tibet, China, played a key role in the evolution of the Tibetan Plateau yet remains a subject of intense debate. New geochronological and geochemical data from adakitic, Nb-enriched, and normal arc magmatic rocks, integrated with results from previous studies, enable us to determine the Carboniferous-Triassic (312−205 Ma), arc-related, plutonic-volcanic rocks in northern Qiangtang. Spatial-temporal relationships reveal three periods of younging including southward (312−252 Ma), rapid northward (249−237 Ma), and normal northward (234−205 Ma) migrations that correspond to distinct slab geodynamic processes including continentward slab shallowing, rapid trenchward slab rollback, and normal trenchward rollback of the Jinsha Paleotethys rather than the Longmuco-Shuanghu Paleotethys, respectively. Moreover, varying degrees of coexistence of adakites/High-Mg andesites (HMAs)/Nb-enriched basalt-andesites (NEBs) and intraplate basalts in the above-mentioned stages is consistent with the magmatic effects of slab window triggered by ridge subduction, which probably started since the Late Carboniferous and continued into the Late Triassic. The Carboniferous-Triassic multiple magmatic migrations and ridge-subduction scenarios provide new insight into the geodynamic processes of the Jinsha Paleotethys and the growth mechanism of the Tibetan Plateau.


Author(s):  
Yu.R. Vladov ◽  
◽  
M.Yu. Nesterenko ◽  
Yu.M. Nesterenko ◽  
A.Yu. Vladova ◽  
...  

The predominant area of application of the developed methodology is the construction of the distribution of the geodynamic state of the developed hydrocarbon fields in oil and gas basin, and the identification of the corresponding distribution law. A number of the hydrocarbon deposits in terms of geological conditions of occurrence, structure and other parameters are geodynamically hazardous during their development. The Federal Law «On Subsurface Resources» (Article 24) requires conducting a complex of geological, surveying, and other observations sufficient for ensuring a normal technological cycle of work, and the prediction of hazardous situations. The developed methodology based on the construction of aggregated additive models for each reservoir and field is presented. It includes four sequential stages (24 operations): first — prepare geodynamic data; second — determine the geodynamic state of productive strata; third — find the geodynamic state of the developed deposits subsoil; fourth — build the distribution of the bowels geodynamic state of these fields for the entire oil and gas basin and identify the relevant distribution law. Oil and gas basin in the west of the Orenburg Region (Volga — Ural and Caspian oil and gas provinces) is considered as an example of implementation. Unique data of twenty geodynamic parameters of 320 productive strata (56 fields) were used. It is revealed that in accordance with the Pearson criterion, the theoretical data with a high confidence probability (95 %) correspond to the law of normal distribution. Developed methodology has significant technical and economic advantages, since it allows to identify the geodynamic state of productive strata and subsoil of the fields being developed, to identify hazardous geodynamic processes and to choose rational modes for the development of hydrocarbon deposits.


2021 ◽  
pp. M56-2021-22
Author(s):  
Mirko Scheinert ◽  
Olga Engels ◽  
Ernst J. O. Schrama ◽  
Wouter van der Wal ◽  
Martin Horwath

AbstractGeodynamic processes in Antarctica such as glacial isostatic adjustment (GIA) and post-seismic deformation are measured by geodetic observations such as GNSS and satellite gravimetry. GNSS measurements have been comprising continuous measurements as well as episodic measurements since the mid-1990s. The estimated velocities typically reach an accuracy of 1 mm/a for horizontal and 2 mm/a for vertical velocities. However, the elastic deformation due to present-day ice-load change needs to be considered accordingly.Space gravimetry derives mass changes from small variations in the inter-satellite distance of a pair of satellites, starting with the GRACE satellite mission in 2002 and continuing with the GRACE-FO mission launched in 2018. The spatial resolution of the measurements is low (about 300 km) but the measurement error is homogeneous across Antarctica. The estimated trends contain signals from ice mass change, local and global GIA signal. To combine the strengths of the individual data sets statistical combinations of GNSS, GRACE and satellite altimetry data have been developed. These combinations rely on realistic error estimates and assumptions of snow density. Nevertheless, they capture signal that is missing from geodynamic forward models such as the large uplift in the Amundsen Sea sector due to low-viscous response to century-scale ice-mass changes.


2021 ◽  
Author(s):  
Elizabeth Ruiz ◽  
Brandon Thibodeaux ◽  
Christopher Dorion ◽  
Herman Mukisa ◽  
Majid Faskhoodi ◽  
...  

Abstract Optimized geomodeling and history matching of production data is presented by utilizing an integrated rock and fluid workflow. Facies identification is performed by use of image logs and other geological information. In addition, image logs are used to help define structural geodynamic processes that occurred in the reservoir. Methods of reservoir fluid geodynamics are used to assess the extent of fluid compositional equilibrium, especially the asphaltenes, and thereby the extent of connectivity in these facies. Geochemical determinations are shown to be consistent with measurements of compositional thermodynamic equilibrium. The ability to develop the geo-scenario of the reservoir, the coherent evolution of rock and contained fluids in the reservoir over geologic time, improves the robustness of the geomodel. In particular, the sequence of oil charge, compositional equilibrium, fault block throw, and primary biogenic gas charge are established in this middle Pliocene reservoir with implications for production, field extension,and local basin exploration. History matching of production data prove the accuracy of the geomodel; nevertheless, refinements to the geomodel and improved history matching were obtained by expanded deterministic property estimation from wireline log and other data. Theearly connection of fluid data, both thermodynamic and geochemical, with relevant facies andtheir properties determination enables a more facile method to incorporate this data into the geomodel. Logging data from future wells in the field can be imported into the geomodel allowingdeterministic optimization of this model long after production has commenced. While each reservoir is unique with its own idiosyncrasies, the workflow presented here is generally applicable to all reservoirs and always improves reservoir understanding.


Sign in / Sign up

Export Citation Format

Share Document