Methane Refinement by Iron Oxide, Packed Column Water Scrubbing, and Activated Charcoal Scrubbing Techniques

Author(s):  
Shah Fahad Bin Masud ◽  
Muhammad Hassan ◽  
Faaz Ahmed Butt ◽  
Ram Sarup Singh ◽  
Asif Hussain Khoja ◽  
...  
2012 ◽  
Vol 9 (4) ◽  
pp. 2384-2393 ◽  
Author(s):  
G. Kanthimathi ◽  
P. Kotteeswaran ◽  
P. Thillai Arasu ◽  
P. Govindaraj ◽  
M. Kottaisamy

The synthetic nano iron oxide (SNIO) was synthesized by acid base hydrolysis and characterized by the XRD, SEM and EDAX techniques. Batch adsorption experiments were carried out to study the sorption behaviour of SNIO and commercial activated charcoal (CAC) towards Ni(II) ions as a function of initial concentration of the adsorbate, adsorbent dosage, contact time and pH. The adsorption for Ni(II) is found to be better in acidic pH for both SNIO and CAC. The equilibrium adsorption isotherm data have been tested by applying both Freundlich and Langmuir isotherm models. The Separation factor R was found to be between 0 and 1 for both the adsorbent, it clearly indicates the feasibility of adsorption.


1994 ◽  
Vol 30 (9) ◽  
pp. 175-182 ◽  
Author(s):  
C. H. Lai ◽  
S. L. Lo ◽  
C. F. Lin

In drinking water treatment systems, the conventional process (coagulation, sedimentation and filtration units) cannot remove trace metals efficiently. Iron oxide is an excellent, regenerable adsorbent, and often controls free metals through adsorption. The utilization of heating process for coating iron oxide on sand surface allowed the media to be used in a packed column. The adsorbent media were investigated for removing copper ions from water using both batch and column experimental methods. A one-dimensional convective-dispersive transport model with a combination of second-order kinetic adsorption equation was adopted for predicting copper retention in a 80 cm depth filter bed. The concentration of copper ions in influent ranged from 0.64 to 3.2 mg/l. The experimental results indicated that the copper could be removed completely until the breakpoint. Once breakthrough occurred, the regeneration of the media could be achieved by soaking with acid solution (pH = 3.0). The simulation results of the transport-adsorption equation fit experimental data quite well. Consequently, the coated sand can be applied for the conventional rapid filtration process to remove copper ions from water.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1239-1244 ◽  
Author(s):  
R. P. Bailey ◽  
T. Bennett ◽  
M. M. Benjamin

A new adsorbent media has been prepared consisting of iron oxide coated onto sand surfaces. The oxide coating is made by adding a solution of a ferric salt and base to a mixture of sand and applying various heating protocols. The iron oxide is an excellent, regenerable adsorbent, and the process of coating it on sand allows the media to be used in a packed column. Depending on solution pH, the media can be made to adsorb either cationic or anionic metals. In this work, the media was used to collect hexavalent chromium from a synthetic waste stream. The influent contained 20 mg/L Cr(VI), and better than 99% removal was achieved consistently. Once breakthrough occurred, the media could be regenerated by exposure to base. The pH of the regenerant solution determined the kinetics and efficiency of the regeneration process. With further development, the process represents an inexpensive and effective method for removal and recovery of metals from industrial waste streams.


Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


Sign in / Sign up

Export Citation Format

Share Document