Effect of carbonation on leaching behavior, engineering properties and microstructure of cement-stabilized lead-contaminated soils

2017 ◽  
Vol 76 (21) ◽  
Author(s):  
Dingwen Zhang ◽  
Zhiguo Cao ◽  
Tao Zhang ◽  
Xinjie Su
Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 478 ◽  
Author(s):  
Yan Zhang ◽  
Hassan Baaj ◽  
Rong Zhao

Coal gangue can cause significant heavy metal pollution in mining areas, which would have a negative impact on the environment and human health. The objective of this research is to investigate the relationship between expansive soil amount and the leaching behavior of Chromium from coal gangue and the engineering properties of coal gangue used as building materials. The leaching behavior of Chromium from coal gangue was observed using atomic absorption spectrometry. A column leaching experiment was conducted to examine the impact of leaching time and heavy metal concentration. Furthermore, the unconfined compressive strength test was employed to evaluate the engineering properties of coal gangue with expansive soil. The results of the study demonstrate that pH of leachate solutions, leaching time, and expansive soil amounts in mixtures have important influence on Chromium concentration. The leachate solutions, which behave like alkaline, provide a positive environment for adsorbing Cr. Adding expansive soil can reduce leached concentrations of Chromium from coal gangue when compared to leachate of original coal gangue. It was found that 30% expansive soil was an improved solution because it delayed the cumulative concentration to reach the limitation line. Moreover, the unconfined compressive strength of coal gangue was boosted through adding expansive soil.


2020 ◽  
Vol 857 ◽  
pp. 253-258
Author(s):  
Mohamed Moafak Arbili ◽  
Mohamed Karpuzcu ◽  
Farman Khalil

In this study investigates utilizing of slag as an additional material to improve engineering properties of contaminated soil by crude oil to changing the engineering characteristics to be satisfying and compatible, this is due to its pozzolanic reactivity. The aim of this study the impact of slag material in geotechnical engineering and to stabilize properties of contaminated soils. Two percentages of slag were utilized in this study, which is 0% and 6%. Compaction and direct shear strength tests had been conducted on the artificial contaminated prepared soil samples. In the results, showed that the increasing of slag leads to a decrease in the optimum water contents while the maximum dry density values increase. Furthermore, the shear strength is improved by utilizing slag so that slag can be considered as a stabilizing material to improve the properties of contamination soil.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chuang Yu ◽  
Raoping Liao ◽  
Chaopeng Zhu ◽  
Xiaoqing Cai ◽  
Jianjun Ma

Oil-contaminated soils have been paid much attention due to the reclamation of industrial lands in coastal cities of China. As known, oil-contaminated soils are inapplicable for construction due to their weak engineering properties, thus leading to the requirement of remediation and reclamation for oil-contaminated sites. This study presents an experimental investigation on the stabilization of contaminated soils with Portland cement. Investigations including the Atterberg limits, unconfined compressive strength, direct shear strength, and microstructure of cement-stabilized soils have been carried out, verifying the suitability of applying cement to improve engineering properties. Experimental results show that the geotechnical properties of contaminated soil are very poor. With the application of cement, the liquid limit and plasticity index of contaminated soil samples decrease dramatically, and the strength of treated soils has been improved. Experimental results from scanning electron microscope (SEM) indicate that cement-stabilized oil-contaminated soil is featured with a stable supporting microstructure, owing to the cementation between soil particles. This also confirms the applicability of cement to be served as an additive to treat oil-contaminated soils.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Abdollah Yazdi ◽  
Ebrahim Sharifi Teshnizi

AbstractLeaking tanks may lead to severe contamination of their surrounding soil. The geotechnical behavior of the soil varies with the physicochemical processes that occur between the contaminant and the soil. In this respect, studying the geochemical properties of gasoline-contaminated soils and sediments seems to be important for engineering and especially environmental purposes. In this paper, laboratory tests were carried out to examine the effects of crude gasoline contamination on some of the geotechnical properties of a silty soil sampled from the Mashhad plain, located in the northeast of Iran. Tests consisted of basic properties, Atterberg limits, compaction, direct shear, and uniaxial compression tests, which were carried out on clean and contaminated soil samples at the same densities. The contaminated samples were prepared by mixing the soils with crude gasoline in the amounts of 3%, 6%, 9%, and 12% of dry weight and curing periods of 0, 7, 15, and 30 days. Results indicated a decrease in the friction angle and an increase in the cohesion of the soil by increasing gasoline content. Besides, a reduction in the maximum dry density and optimum moisture content was observed in the compaction test. The increase in gasoline percentage up to 6% also showed a direct effect on increasing the liquid limit and plastic limit of silty soil, which decreased thereafter. Moreover, any increase in gasoline percentage had a reverse effect on the modulus of elasticity of the soil. The increase in gasoline percentage up to 3% also had a direct impact on the uniaxial compressive strength of the soil, exceeding which it started to decline. Finally, the effects of contamination duration were examined by testing contaminated samples in periods of 7, 15, and 30 days under natural conditions. The results showed a reverse relationship with all geotechnical properties due to aging and a reduction in the gasoline content due to the evaporation of volatile compounds. Also, the numerical analysis of the laboratory results indicated an increase in settling and the percentage of shear strain beneath the foundation with increasing the contamination level, confirming the laboratory results.


Author(s):  
Zhongping Yang ◽  
Yao Wang ◽  
Denghua Li ◽  
Xuyong Li ◽  
Xinrong Liu

The solidification/stabilization (S/S) method is the usual technique for the remediation of soils polluted by heavy metal in recent years. However, freeze–thaw cycles, an important physical process producing weathering of materials, will affect the long-term stability of engineering characteristics in solidified contaminated soil. In addition, it is still questionable whether using large dosages of binders can enhance the engineering properties of solidified/stabilized contaminated soils. In this study, the three most commonly used binders (i.e., cement, quicklime, and fly ash), alone and mixed in different ratios, were thus added to lead-contaminated soil in various dosages, making a series of cured lead-contaminated soils with different dosages of binders. Afterward, unconfined compression strength tests, direct shear tests, and permeability tests were employed on the resulting samples to find the unconfined compressive strength (UCS), secant modulus ( E 50 ), internal friction angle ( φ ), cohesion ( c ), and permeability coefficient ( k ) of each solidified/stabilized lead-contaminated soil after 0, 3, 7, and 14 days of freeze–thaw cycles. This procedure was aimed at evaluating the influence of freeze–thaw cycle and binder dosage on engineering properties of solidified/stabilized lead-contaminated soils. Results of our experiments showed that cement/quicklime/fly ash could remediate lead-contaminated soils. However, it did not mean that the more the dosage of binder, the better the curing effect. There was a critical dosage. Excessive cementation of contaminated soils caused by too much binder would result in loss of strength and an increase in permeability. Furthermore, it was found that UCS,   E 50 , φ , c , and k values generally decreased with the increase in freeze–thaw cycle time—a deterioration effect on the engineering characteristics of solidified lead-contaminated soils. Avoiding excessive cementation, 2.5% cement or quicklime was favorable for the value of E 50 while a 2.5% fly ash additive was beneficial for the k value. It is also suggested that if the freeze–thaw cycle continues beyond the period supported by excessive cementation, such a cycle will rapidly destroy the original structure of the soil and create large cracks, leading to an increase in permeability. The results also showed that the contaminated soils with a larger dosage of binders exhibited more significant deterioration during freeze–thaw cycles.


2021 ◽  
pp. 2000277
Author(s):  
Joseph Bassil ◽  
Valérie Azzi ◽  
Aude Naveau ◽  
Tony Menhem ◽  
Ibtihaj Rizk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document