scholarly journals Evaluation of stability in maize hybrids using univariate parametric methods

Author(s):  
Seyed Habib Shojaei ◽  
Khodadad Mostafavi ◽  
Amirparviz Lak ◽  
Ali Omrani ◽  
Saeed Omrani ◽  
...  

AbstractGenotype × environment interaction is one of the complex issues of breeding programs to produce high-yielding and compatible cultivars. Interaction of genotype × environment and make the more accurate selection, the performance and stability of hybrids need to be considered simultaneously. This study aimed to investigate stable genotypes with yield using 12 maize hybrids in different climatic conditions of Iran. The experimental design used was a randomized complete blocks design in three replications in two cropping years in Karaj, Birjand, Shiraz, and Arak stations. The simple analysis of variance performed on grain yield of genotypes indicated that all hybrids studied each year and station were significantly different in grain yield. Also, the combined analysis results showed a significant effect on the environment, the effects of genotype, and the interaction of genotype × environment and t in the studied hybrids different. Comparing Duncan's mean on the data obtained from the research, KSC705 genotypes with an average yield of 7.21 and KSC704 genotype with an average yield of 7.04 were identified as high yield cultivars. In order to identify stable cultivars, six stability parameters were used. KSC260 and KSC707 genotypes had stability Based on the environmental variance, also had stability based KSC705, KSC707 genotype on environmental the coefficient of variation, and KSC260 genotypes had stability based methods of genotype and environment interaction. As well as based on Eberhart and Russell regression coefficient had the stability to KSC400 and SC647 genotypes. Also, they were identified as the most stable genotypes based on the detection coefficient method, KSC707, and KSC703 genotypes.

2020 ◽  
Author(s):  
Achmad Amzeri ◽  
◽  
B.S. DARYONO ◽  
M. SYAFII ◽  
◽  
...  

The phenotypic analysis of new candidate varieties at multiple locations could provide information on the stability of their genotypes. We evaluated the stability of 11 maize hybrid candidates in five districts in East Java Province, Indonesia. Maize hybrids with high yield potential and early maturity traits derived from a diallel cross were planted in a randomized complete block design with two checks (Srikandi Kuning and BISI-2) as a single factor with four replicates. The observed traits were grain yield per hectare and harvest age. The effects of environment, genotype, and genotype × environment interaction on yield were highly significant (P < 0.01). KTM-1, KTM-2, KTM-4, KTM-5, and KTM-6 showed higher average grain yield per hectare than the checks (Srikandi Kuning = 8.49 ton ha−1 and BISI-2 = 7.32 ton ha−1) at five different locations. The average harvest age of 11 candidates was less than 100 days. KTM-4 and KTM-5 had production yields that were higher than the average yield of all genotypes in all environments (Yi > 7.78 tons ha−1) and were considered stable on the basis of three stability parameters, i.e., Finlay–Wilkinson, Eberhart–Russell, and additive main effect multiplicative interaction (AMMI). KTM-2 had the highest yield among all tested genotypes (9.33 ton ha−1) and was considered as stable on the basis of AMMI but not on the basis of Finlay–Wilkinson and Eberhart–Russell. KTM-1 performed well only in Pamekasan, whereas KTM-6 performed well only in Sampang. Thus, these two genotypes could be targeted for these specific locations.


Scientifica ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Seyed Habib Shojaei ◽  
Khodadad Mostafavi ◽  
Ali Omrani ◽  
Saeed Omrani ◽  
Seyed Mohammad Nasir Mousavi ◽  
...  

The present study investigated the stability and adaptability of maize (Zea mays L.) hybrids. In this study, 12 maize hybrids were planted and examined considering the grain yield. The experiment was arranged in a randomized complete block design (RCBD) with three replications in four research stations in Iran during two crop years. The combined analysis of variance showed that genotype-environment interactions were significant at one percent probability level. The grain yield can stabilize, and hybrids with specific adaptability are recommended to each environment. Hybrids with specific adaptability can be recommended to all types of the environment. Means comparison yield of the genotypes identified DC370 as a high-yield genotype. Regarding AMMI analysis, genotype × environment interactions (GEIs) and two first components were found significant. The SC647 genotype was identified as the most stable genotype. Regarding the stability parameters, SC647 and KSC705 genotypes were selected as the most stable genotypes. From AMMI1 and AMMI2 graphs, the SC647 genotype was identified as the most stable genotype compared with other hybrids.


1994 ◽  
Vol 74 (4) ◽  
pp. 759-762
Author(s):  
O. P. Dangi ◽  
R. I. Hamilton ◽  
C. S. Lin ◽  
D. Andre ◽  
J. J. Johnson

A sorghum breeding program was reactivated in 1981 and selected cultivars, along with local checks, were evaluated in two experiments in the sorghum growing region of northern Cameroon. Experiment 1 was conducted in the Extreme North Province where annual rainfall ranges from 450 to 850 mm. Experiment 2 was conducted in the North Province where annual rainfall exceeds 850 mm. The objective of the study was to select a high yield and high stability sorghum cultivar for each region. The cultivar's responses were investigated using two analyses: the adaptability analysis and the stability analysis. The former used the method of superiority measure, defined by distance mean square between the test cultivar and the maximum (the highest yield in the location), and the latter used type 4 stability parameter, defined by the years within location mean square averaged over all locations. The conceptual separation of adaptability and stability facilitated the cultivars assessment. The results showed that in exp. 1, three cultivars S–35, CS–54 and CS–61 had similar adaptability and stability, while in the exp. 2, S–34 was best in terms of yield but was unstable due to susceptibility to grain mold. In contrast, the second best cultivar CS–63 was poorer in the high-yielding environments but was more stable than S–34. Key words: Sorghum, genotype-environment interaction, adaptability, stability parameters


2016 ◽  
Vol 2 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Mahendra Prasad Tripathi ◽  
Jiban Shrestha ◽  
Dil Bahadur Gurung

The hybrid maize cultivars of multinational seed companies are gradually being popular among the farmers in Nepal. This paper reports on research finding of 117 maize hybrids of 20 seed companies assessed for grain yield and other traits at three sites in winter season of 2011 and 2012. The objective of the study was to identify superior maize hybrids suitable for winter time planting in eastern, central and inner Terai of Nepal. Across site analysis of variance revealed that highly significant effect of genotype and genotype × environment interaction (GEI) on grain yield of commercial hybrids. Overall, 47 genotypes of 16 seed companies identified as high yielding and stable based on superiority measures. The statistical analysis ranked topmost three genotypes among tested hybrids as P3856 (10515 kg ha-1), Bisco prince (8763 kg ha-1) as well as Shaktiman (8654 kg ha-1) in the first year; and 3022 (8378 kg ha-1), Kirtiman manik (8323 kg ha-1) as well as Top class (7996 kg ha-1) in the second year. It can be concluded that stable and good performing hybrids identified as potential commercial hybrids for general cultivation on similar environments in Nepal.


2017 ◽  
Vol 3 (1) ◽  
pp. 38-43
Author(s):  
Md Saleh Uddin ◽  
Md Sultan Alam ◽  
Nasrin Jahan ◽  
Kazi Md Wayaz Hossain ◽  
Md Ali Newaz

Genotypes x environment interaction as well as stability of performance were determined for grain yield and yield contributes of 12 wheat genotypes under four salinity levels of environments (control, 8, 12, 16 dS/m). Significant genotype-environment interaction (linear) for days to heading, plant height, number of spikes per plant and grains per spikes, 1000-grain weight and grain yield per plant at 1% level of probability when tested against pooled deviation. Both the environment (linear) and genotype x environment (linear) components of variation for stability were also significant indicating that prediction of the genotypes on the environment appeared feasible for all the characters. The variance due to pooled deviation was significant for only days to heading. Considering all the three stability parameter, genotype G11 was found most stable among all the genotypes for grain weight of wheat. Among the genotypes G11, G22, G24, G33 and G40 were most desirable for yield per plant. The genotype G32 showed more responsiveness to changing environment and was suited only for highly favorable environments. Based on three stability parameters, G11, G22 and G37 were the most stable and desirable genotypes with reasonable good yield among the all.Asian J. Med. Biol. Res. March 2017, 3(1): 38-43


2019 ◽  
Vol 48 (4) ◽  
pp. 1143-1151
Author(s):  
Vijay Sharma ◽  
RB Dubey ◽  
Rumana Khan

To assess the stability of genotypes for grain yield and physio-biochemical traits associated with terminal heat tolerance pooled analysis of 8 genotypes of wheat of diverse origin, their 28 F1 progeny and 2 checks were carried out in 4 different environments i.e. early sown (E1), normal sown (E2), late sown (E3) and very late sown (E4) conditions. The pooled analysis of variance due to environment (for proline and chlorophyll content), genotypes and genotype × environment interaction was significant for all the traits under consideration. This indicated the distinct and differential effect of the different sowing conditions (environment) and differential response of all the genotypes chosen for the study. The five stable wheat hybrids viz., HI 1544 × HD 2987, Raj 4037 × HD 2987, PBW 175 × HD 2987, HD 2932 × Raj 4079 and PBW 175 × Lok 1 showed higher mean values, favourable regression coefficient and deviation from regression coefficient for grain yield and other associated characters, thus emerged as stable genotypes as per criteria of stability analysis. Similarly, some genotypes showed specific adaptations for poor or heat stress environment.


2014 ◽  
Vol 94 (7) ◽  
pp. 1255-1267 ◽  
Author(s):  
Mahdi Changizi ◽  
Rajab Choukan ◽  
Eslam Majidi Heravan ◽  
Mohammad Reza Bihamta ◽  
Farrokh Darvish

Changizi, M., Choukan, R., Heravan, E. M., Bihamta, M. R. and Darvish, F. 2014. Evaluation of genotype×environment interaction and stability of corn hybrids and relationship among univariate parametric methods. Can. J. Plant Sci. 94: 1255–1267. There have been many approaches available in multi-location crop variety trial. However, the relationship among these approaches is not understood. In this study, therefore, grain yields of 16 corn hybrids were measured in 12 locations in Iran in 2011 and 2012 in order to compare the 23 parametric methods and to assess stability and adaptability of the hybrids. The combined ANOVA indicated that variances due to the genotypes, environments and genotype×environment interaction were substantially significant, which represents great variation among them. Principal component analysis based on rank correlation matrix indicated that stability methods can be classified into four groups. The group related to the dynamic concept and strongly associated with mean grain yield consisted of the measures, superiority index (Pi), desirability index (DI), geometric adaptability index (GAI) and genotypic stability (Di2 ). This group was more useful in agronomic goals in comparison with other methods. The second group also indicated the dynamic concept contained slope of regression models. The third group reflected the static concept included, the environmental variance (EV), the variance in regression deviation (S2di) and type IV stability concept ([Formula: see text]). The fourth group impressed concurrently by grain yield and stability included the measures coefficient of variability (CV), Wrick's ecovalence (W2), Shukla's stability variance (SH), Plaisted and Peterson's parameter (pp59), Plaisted's parameter (p60), yield reliability index (Ii), residual MS of regression models and coefficient of determination (R 2). Based on both concepts of stability (dynamic and static), hybrids (KLM76002/3×MO17), (KLM77002/10-5-1×K19/1) and (K47/2×MO17) were the most stable and (KSC704), (KSC720 (K74/1×K19)) and (K48/3×K18) were found to be the most adaptable to favorable environments. The methods of Pi, Di 2 , DI and GAI were more useful and more convenient than other methods. [Formula: see text] and [Formula: see text] showed an acceptable static concept of stability methods whereas study [Formula: see text] was more efficient than [Formula: see text].


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 357
Author(s):  
Nikolaos Katsenios ◽  
Panagiotis Sparangis ◽  
Sofia Chanioti ◽  
Marianna Giannoglou ◽  
Dimitris Leonidakis ◽  
...  

The interaction of genotype by the environment is very common in multi-environment trials of maize hybrids. This study evaluates the quantity and the quality of grain production and the stability of four maize genotypes in a field experiment that was conducted in five different locations for two years. In order to make a reliable evaluation of the performance of genotypes in the environments, principal components analysis (PCA) was used to investigate the correlation of the yield, soil properties and quality characteristics, while the additive main effects and multiplicative interaction (AMMI) analysis detected the narrow adaptations of genotypes at specific mega-environments. For the yield, AMMI analysis indicated that a group of five environments (ENV1, ENV8, ENV6 ENV10 and ENV9) gave higher yields than the mean value and at the same time had low first interaction principal components axis (IPC1) scores, indicating small interactions. Regarding protein and fiber contents, ENV1 and ENV2, gave the highest values and this could be attributed to the high concentration rates of nutrients like Mg, Ca and the soil texture (C). Specifically for the protein, the results of the analysis indicated that certain environment would provide more protein content, so in order to obtain higher grain protein, growers should grow in certain locations in order to improve the content of this quality characteristic, certain genotypes should be used in certain environments.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2136
Author(s):  
Mohammad Rafiqul Islam ◽  
Bikas Chandra Sarker ◽  
Mohammad Ashraful Alam ◽  
Talha Javed ◽  
Mohammad Jahangir Alam ◽  
...  

Water deficit stress is a critical abiotic constraint to mung bean production that affects plant growth and development and finally reduces crop yield. Therefore, a field experiment was conducted at five diverse environments using four water stress-tolerant genotypes, namely BARI Mung-8, BMX-08010-2, BMX-010015, and BMX-08009-7, along with two popular cultivated varieties (check) of BARI Mung-6 and BARI Mung-7 to evaluate more stable tolerant genotypes across the country. Stability analysis was performed based on the grain yield. The combined analysis of variance showed significant variations among genotypes, environments, and their interactions. The AMMI analysis of variance indicated that genotype accounted for 91% of the total sum of squares for grain yield, followed by genotype × environment interaction (5%), and environment (4%). Partitioning of interaction indicated that the first three interaction principal components (IPCA1–IPCA3) were highly significant (p ≤ 0.01). Using these significant IPCAs, AMMI stability parameters and non-parameter indices BMX-010015 was found stable across the environment based on yield traits and grain yield. The BMX-08010-2 genotype also showed significant regression coefficient (bi) more than unity, and non-significant deviation from regression (S2di) values, indicating suitable for a favorable environment considering grain yield. So, based on the stability analysis (Eberhart and Russell), additive main effects, and multiplicative interactions (AMMI) analysis, the BMX-010015 and BMX-08010-2 could be suitable for having tolerance to water deficit stress.


2021 ◽  
Vol 34 (4) ◽  
pp. 739-751
Author(s):  
FELIPE CECCON ◽  
LIVIA MARIA CHAMMA DAVIDE ◽  
MANOEL CARLOS GONÇALVES ◽  
ADRIANO DOS SANTOS ◽  
ELAINE PINHEIRO REIS LOURENTE

ABSTRACT Maize is widely cultivated in Brazil, and nitrogen is a major nutrient for its yield. Azospirillum brasiliense bacteria help in plant nutrient supply; however, maize-Azospirillum symbiosis is not very efficient and requires selection of genotypes with a more efficient association. Multivariate indexes facilitate selection using a single value, and GGE-biplot analysis enables the visualization of the genotype-environment interaction from this value. The present study aimed to select progenies that effectively associate with the bacteria and study the efficiency of progeny selection using a multivariate index observed in the GGE-biplot method. The experiments were conducted in two cities in the state of Mato Grosso do Sul. In a simple 16 × 16 lattice, 256 genotypes were evaluated in the presence and absence of diazotrophic bacteria. PH, SL, SD, FI, HGM, SS, and GY were measured for the construction of a selection index. Genotypes exhibited significant genotype–environment interactions for all evaluated traits, allowing their use in the selection index. High-yield genotypes were not those with the highest selection index values. The traits GY, SD, HGM, SS, SL, and PH contributed the most to the construction of the index. The no-till system may have contributed to the weaker response of maize inoculated with Azospirillum brasiliense. Genotype 96 had the highest values of the characteristics used to calculate the GISI, along with the stability between environments.


Sign in / Sign up

Export Citation Format

Share Document