scholarly journals Assessment of groundwater potentiality using geospatial techniques in Purba Bardhaman district, West Bengal

2020 ◽  
Vol 10 (10) ◽  
Author(s):  
Subodh Chandra Pal ◽  
Chiranjit Ghosh ◽  
Indrajit Chowdhuri

Abstract The word water is life, so life on this planet cannot be possible without water. Water is an essential natural resource that is a surface and groundwater device for human society. The purpose of this research is to assess the groundwater potentiality of the Purba Bardhaman district. All data (primary and secondary) are collected from different sources and analyzed in geographic information system (GIS) software to prepare thematic maps. Different geo-environmental factors like as land use and land cover, soil, lithology, rainfall and distance from the river, etc., can impact on groundwater availability directly or indirectly in Purba Bardhaman area. To identify groundwater potential zones, all these factors are composed into GIS software using multi-criteria decision analysis (MCDA) method. The groundwater potential map has been divided into five classes based on their magnitude as very high, high, medium, low and very low groundwater potential zones. It shows that the areas of very low, low, medium, high and very high groundwater potential zones are 21.54%, 35.80%, 26.47%, 10.13%, 6.06%, respectively, of the total area. Finally, validation is carried out using groundwater depth data collected from 44 drilled tube wells which are located in a scattered manner for whole Purba Bardhaman district which indicates a higher similarity with an area under curve value of 86.8%.

Warta Geologi ◽  
2021 ◽  
Vol 47 (2) ◽  
pp. 103-112
Author(s):  
S.N. Yusuf ◽  
◽  
J.M. Ishaku ◽  
W.M. Wakili ◽  
◽  
...  

Karlahi is largely underlain by granites and migmatites gneiss of the Adamawa Massif. The area lies west of Benue Trough and east of Cameroon volcanic line. The aim of this paper is to determine hydraulic properties of water bearing layer using parameters derived from Dar-Zarrouk equation and characterized them into groundwater potential zones. The resistivity values of the weathered and slightly weathered layers which make up the water bearing layers were added and an average was taken and used as the resistivity of the water bearing formation in computation of Dar-Zarrouk parameters in Karlahi area. The values of resistivity of water bearing formation ranged from 18 to 4963 Ωm with an average resistivity value of 549 Ωm and the thickness of the water bearing formation ranges from 21 to 32 m with an average thickness of 24.5 m. Conductivity values range from 0.000201 to 0.05509 (σ) while the longitudinal conductance range from 0.00483 to 1.2363 Ω-1, the transverse resistance ranges from 407 to 123504.3 Ωm2. The hydraulic conductivity and transmissivity values range from 0.14 to 25.87 m/day and 3.28 to 580.4 m2/day respectively. The longitudinal conductance values in Karlahi area revealed poor to good with an average longitudinal conductance value that is moderate. High transverse resistance values are located in the central and southern part of Karlahi area while low values are located in the eastern part. The spatial distribution map of transmissivity in the area revealed moderate to high transmissivity values in the north central part and a negligible to low transmissivity in southern part, extreme northeastern part. The groundwater potential map of Karlahi area shows negligible to weak potential groundwater zones in SW and SE, moderate potential in the central to northern part of Karlahi area.


Author(s):  
D. R. Abdullahi ◽  
O. O. Oladosu ◽  
S. A. Samson ◽  
L. O. Abegunde ◽  
T. A. Balogun ◽  
...  

Aim: Employ the use of Remote Sensing and Geographic Information System (GIS) to analyze areas of groundwater potentials in Keffi LGA to meet the rate of water demand. Study Design:  The study is designed to delineate and analyze the drainage characteristics, and map out the groundwater potential zones. Place and Duration of Study: The study is conducted in Keffi LGA of Nassarawa State, Nigeria in 2018. Methodology: Both spatial and non-spatial data were utilized for this research, including Ground Control Points, satellite imageries, and maps. The data generated consisting of the rainfall, NDVI, lineament, geology, slope, and relief were prepared into thematic layers and used for the generation of the drainage morphometric parameters and multi-criteria overlay analysis. Each of the layer used has inputs were ranked based on their relative importance in controlling groundwater potential, and divided into classes using the hydro-geological properties. The groundwater potential analysis reveals four distinct zones representing high, moderate, less and least groundwater potential zones. The delineated groundwater potential map was verified using the available Ground Control Point of boreholes across the study area. Results: The drainage of the study area falls in the 4th order, with the drainage density ranging from 0.2 to 1.6. From the groundwater potential map generated using the rainfall, lineament, geology, drainage density, slope, soil, and NDVI attributes, areas categorized having the moderate groundwater potentials cover about 89.1 km2, while the least cover 0.1 km2 of the study area.  Validating the result with borehole locations across the location shows that the boreholes are dug based on the availability of water following the groundwater potentials, and; 59.8% of the settlement area falls within the moderate groundwater potential classes. Conclusion: The area has adequate capacity for water supply, and only those within the high groundwater potential classes can access groundwater throughout the year.


Author(s):  
Adebo A. Babatunde ◽  
Ilugbo Stephen Olubusola ◽  
Oladetan Folorunso Emmanuel

A geoelectric investigation of groundwater prospect at Omitogun Estate, along Benin/Ilesha express way Akure, within the basement complex of southwestern Nigeria was carried out with a view to providing information on the geoelectric characteristic of the subsurface sequence, bedrock topography, subsurface structural features and their hydrogeologic significance, in order to identify aquifer units and determine possible areas for groundwater potential zones. The study involved the use of Schlumberger vertical electrical sounding data at thirty (30) stations. The vertical electrical sounding data presented as field curves were interpreted quantitatively by partial curve matching method and computer iteration technique. Fracture resistivity map, aquifer resistivity map, aquifer thickness map and overburden thickness map were generated from the results. Groundwater potential map was also generated from the integration of these maps using multi-criteria decision analysis (MCDA). The study area has been classified into low, medium, high groundwater potential zones and the results from well data across the entire study area were used to validate the accuracy of the groundwater potential map. From the results obtained, it could be concluded that the study area is generalized to be of low groundwater potential.  


2020 ◽  
Vol 4 (1) ◽  
pp. 57-60
Author(s):  
Zulherry Isnain ◽  
Siti Nadia Abd Ghaffar

The growing demand for groundwater is due to several reasons such as the increment of population, agriculture, pollution, industrialization and urbanization. This study aims to map the groundwater potential zones by using the Geographical Information System (GIS) with remote sensing techniques in the study area. The study area is located at Kg Timbang Dayang and its surrounding at Kota Belud, Sabah. Eight parameters were studied that affect the occurrence of groundwater in the study area. Those parameters are obtained from existing maps, remote sensing imagery and associated databases. The parameters are; lithology, rainfall distribution, drainage density, lineament density, soil types, elevation, slope steepness and landuse. All these parameters will be used to create the thematic maps based on the given weightage values. Finally, all the thematic maps will be integrated to produce the final groundwater potential map of the study area. The groundwater potential map is classified into three categories which are low, moderate and high.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 669
Author(s):  
Abid Sarwar ◽  
Sajid Rashid Ahmad ◽  
Muhammad Ishaq Asif Rehmani ◽  
Muhammad Asif Javid ◽  
Shazia Gulzar ◽  
...  

The changing climate and global warming have rendered existing surface water insufficient, which is projected to adversely influence the irrigated farming systems globally. Consequently, groundwater demand has increased significantly owing to increasing population and demand for plant-based foods especially in South Asia and Pakistan. This study aimed to determine the potential areas for groundwater use for agriculture sector development in the study area Lower Dir District. ArcGIS 10.4 was utilized for geospatial analysis, which is referred to as Multi Influencing Factor (MIF) methodology. Seven parameters including land cover, geology, soil, rainfall, underground faults (liniment) density, drainage density, and slope, were utilized for delineation purpose. Considering relative significance and influence of each parameter in the groundwater recharge rating and weightage was given and potential groundwater areas were classified into very high, high, good, and poor. The result of classification disclosed that the areas of 113.10, 659.38, 674.68, and 124.17 km2 had very high, high, good, and poor potential for groundwater agricultural uses, respectively. Field surveys for water table indicated groundwater potentiality, which was high for Kotkay and Lalqila union councils having shallow water table. However, groundwater potentiality was poor in Zimdara, Khal, and Talash, characterized with a very deep water table. Moreover, the study effectively revealed that remote sensing and GIS could be developed as potent tools for mapping potential sites for groundwater utilization. Furthermore, MIF technique could be a suitable approach for delineation of groundwater potential zone, which can be applied for further research in different areas.


2021 ◽  
Vol 10 (6) ◽  
pp. 396
Author(s):  
Ümit Yıldırım

In this study, geographic information system (GIS)-based, analytic hierarchy process (AHP) techniques were used to identify groundwater potential zones to provide insight to decisionmakers and local authorities for present and future planning. Ten different geo-environmental factors, such as slope, topographic wetness index, geomorphology, drainage density, lithology, lineament density, rainfall, soil type, soil thickness, and land-use classes were selected as the decision criteria, and related GIS tools were used for creating, analysing and standardising the layers. The final groundwater potential zones map was delineated, using the weighted linear combination (WLC) aggregation method. The map was spatially classified into very high potential, high potential, moderate potential, low potential, and very low potential. The results showed that 21.5% of the basin area is characterised by high to very high groundwater potential. In comparison, the very low to low groundwater potential occupies 57.15%, and the moderate groundwater potential covers 21.4% of the basin area. Finally, the GWPZs map was investigated to validate the model, using discharges and depth to groundwater data related to 22 wells scattered over the basin. The validation results showed that GWPZs classes strongly overlap with the well discharges and groundwater depth located in the given area.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohd Yawar Ali Khan ◽  
Mohamed ElKashouty ◽  
Ali Mohammad Subyani ◽  
Fuqiang Tian ◽  
Waleed Gusti

AbstractProterozoic basement aquifers are the primary source of water supply for the local populations in the Aseer (also spelled “Asir” or “Assir”) province located in the southwest of Saudi Arabia (SA) since high evaporation rates and low rainfall are experienced in the region. Groundwater assets are receiving a lot of attention as a result of the growing need for water due to increased urbanization, population, and agricultural expansion. People have been pushed to seek groundwater from less reliable sources, such as fracture bedrocks. This study is centered on identifying the essential contributing parameters utilizing an integrated multi-criteria analysis and geospatial tools to map groundwater potential zones (GWPZs). The outcome of the GWPZs map was divided into five categories, ranging from very high to negligible potential. The results concluded that 57% of the investigated area (southwestern parts) showed moderate to very high potentials, attributed to Wadi deposits, low topography, good water quality, and presence of porosity and permeability. In contrast, the remaining 43% (northeastern and southeastern parts) showed negligible aquifer potential zones. The computed GWPZs were validated using dug well sites in moderate to very high aquifer potentials. Total dissolved solids (TDS) and nitrate (NO32−) concentrations were highest and lowest in aquifers, mainly in negligible and moderate to very high potential zones, respectively. The results were promising and highlighted that such integrated analysis is decisive and can be implemented in any region facing similar groundwater expectations and management.


2021 ◽  
Vol 13 (22) ◽  
pp. 4684
Author(s):  
Qing Zhang ◽  
Shuangxi Zhang ◽  
Yu Zhang ◽  
Mengkui Li ◽  
Yu Wei ◽  
...  

Mianyang City is located in the varied topographic areas of Sichuan Province in southwestern China and is characterized by a complex geological background. This area is prone to disasters and its varied topography is inconvenient for emergency water storage and supply. Groundwater is essential for alleviating the demand for water and post-disaster emergency water supply in this area. This study applied AHP to integrate remote sensing, geological and hydrological data into GIS for the assessment of groundwater potential, providing a plan for the rational exploitation of groundwater and post-disaster emergency water supply in the area. Nine factors, including the spring calibration related to groundwater, were integrated by AHP after multicollinear checks. As a result, the geology-controlled groundwater potential map was classified into five levels with equal intervals. All the results were validated using borehole data, indicating the following: the areas with yield rates of , 1–20 , and 20–400 accounted for 2.66%, 36.1%, and 39.62%, respectively, whereas the areas with yield rates of 400–4000 and accounted for only 20.88% and 0.75% of the overall area. The flexibility of this quick and efficient method enables its application in other regions with a similar geological background.


Author(s):  
Mary Christine Chepchumba ◽  
James M. Raude ◽  
Joseph K. Sang

Integration of Remote Sensing (RS) and the Geographical Information System (GIS) approaches in the field of groundwater resources management is a breakthrough. The RS and GIS geospatial approaches can enhance the assessment, monitoring, and conservation of groundwater resources. In this study, RS and GIS geospatial techniques were applied with the aim of identifying groundwater potential zones in Embu County, Kenya, based on selected multi influencing factors. Lineament layer was obtained by processing Landsat 8 ETM+ image using Principal Component Analysis in ENVI®4.7 and automatic extraction from Principal Component Image using the LINE module in Geomatica software. The resultant groundwater potential map showed that approximately 78% of the total area ranged from ‘high’ to ‘very high’ zones indicating that almost half of the study area has good groundwater potential. About 20% showed moderate potential while only 2% fell under the low potential zone. The proposed study approach can be used as a new way of modeling geospatial data for identification and mapping of groundwater potential zones. The study findings are useful to first-hand information planners and local authorities for assessment, planning, management and administration of groundwater resources in Embu County.


2021 ◽  
Author(s):  
Muhammad Jamal Nasir ◽  
Sajjad Khan ◽  
Tehreem Ayaz ◽  
Amir Zeb Khan ◽  
Waqas Ahmad ◽  
...  

Abstract This study was an attempt to evaluate the groundwater potentiality in Kabul province, Afghanistan using geospatial multi influencing factor (MIF) approach. The influencing parameters employed for the assessment of groundwater potential zones (GWPZ) includes slope, geology, soil, land use/land cover, lineament density, rainfall and drainage density. The sub-classes within each influencing parameter were sub-divided, based on their effectiveness in groundwater potentiality as major, minor and no effect, and subsequently assigned a score value. The combined score value of these parameters was used for calculating the relative weight. The delineated GWPZ were classified in four groups, i.e. poor, moderate, good and very good GWPZ. The study results revealed that very good GWPZ covered an area of 354.87km2 (2% of the total area), good 1523.86 km2 (20%), moderate 2250.99 km2 (73%) and poor 477.19 km2 (5%). The study concluded that geospatial assisted MIF approach was very useful and efficient techniques for the assessment of GWPZ and can be effectively employed to enhance the conceptual understanding of groundwater resources of Kabul Basin, Afghanistan.


Sign in / Sign up

Export Citation Format

Share Document