scholarly journals An experimental study to investigate the physical and dynamic elastic properties of Eagle Ford shale rock samples

Author(s):  
Faisal Altawati ◽  
Hossein Emadi ◽  
Rayan Khalil

AbstractUnconventional resources, such as Eagle Ford formation, are commonly classified for their ultra-low permeability, where pore sizes are in nano-scale and pore-conductivity is low, causing several challenges in evaluating unconventional-rock properties. Several experimental parameters (e.g., diffusion time of gas, gas injection pressure, method of permeability measurement, and confining pressure cycling) must be considered when evaluating the ultra-low permeability rock's physical and dynamic elastic properties measurements, where erroneous evaluations could be avoided. Characterizing ultra-low permeability samples' physical and elastic properties helps researchers obtain more reliable information leading to successful evaluations. In this study, 24 Eagle Ford core samples' physical and dynamic elastic properties were evaluated. Utilizing longer diffusion time and higher helium injection pressure, applying complex transient method, and cycling confining pressure were considered for porosity, permeability, and velocities measurements. Computerized tomography (CT) scan, porosity, permeability, and ultrasonic wave velocities were conducted on the core samples. Additionally, X-ray Diffraction (XRD) analysis was conducted to determine the mineralogical compositions. Porosity was measured at 2.07 MPa injection pressure for 24 h, and the permeability was measured using a complex transient method. P- and S-wave velocities were measured at two cycles of five confining pressures (up to 68.95 MPa). The XRD analysis results showed that the tested core samples had an average of 81.44% and 11.68% calcite and quartz, respectively, with a minor amount of clay minerals. The high content of calcite and quartz in shale yields higher velocities, higher Young's modulus, and lower Poisson's ratio, which enhances the brittleness that is an important parameter for well stimulation design (e.g., hydraulic fracturing). The results of porosity and permeability showed that porosity and permeability vary between 5.3–9.79% and 0.006–12 µD, respectively. The Permeability–porosity relation of samples shows a very weak correlation. P- and S-wave velocities results display a range of velocity up to 6206 m/s and 3285 m/s at 68.95 MPa confining pressure, respectively. Additionally, S-wave velocity is approximately 55% of P-wave velocity. A correlation between both velocities is established at each confining pressure, indicating a strong correlation. Results illustrated that applying two cycles of confining pressure impacts both velocities and dynamic elastic moduli. Ramping up the confining pressure increases both velocities owing to compaction of the samples and, in turn, increases dynamic Young's modulus and Poisson's ratio while decreasing bulk compressibility. Moreover, the results demonstrated that the above-mentioned parameters' values (after decreasing the confining pressure to 13.79 MPa) differ from the initial values due to the hysteresis loop, where the loop is slightly opened, indicating that the alteration is non-elastic. The findings of this study provide detailed information about the rock physical and dynamic elastic properties of one of the largest unconventional resources in the U.S.A, the Eagle Ford formation, where direct measurements may not be cost-effective or feasible.

Geophysics ◽  
1993 ◽  
Vol 58 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Gang Yu ◽  
Keeva Vozoff ◽  
David W. Durney

Laboratory measurements are described on Permian coals from Wollongong, New South Wales, Australia related to the dependence of ultrasonic P‐ and S‐wave velocities, attenuation, anisotropy and the dynamic elastic moduli on confining pressure, water saturation, and pore pressure. Five independent stiffness constants are used to represent the elastic anisotropy of the specimens as a function of confining pressure and water saturation. The anisotropy is believed to be controlled mainly by the internal structure of the coals, while the pressure dependence of the constants is controlled mainly by randomly oriented cracks. P‐ and S‐wave dispersions were measured on water‐saturated specimens as confining pressures increased from 2 MPa to 40 MPa. The samples represented cores taken both parallel and perpendicular to bedding planes. Velocities along bedding planes are marginally higher than those across bedding planes. This anisotropy is insensitive to confining pressure. Attenuation was also measured, both normal and parallel to bedding planes, on dry and water‐saturated specimens from 2 MPa to 40 MPa confining pressures. The experimental results show that dynamic elastic properties are potential indicators of the states of stress and saturation in coal seams, and provide necessary information for computer modeling and interpreting seismic surveys carried out to assist mine development.


2013 ◽  
Vol 53 (1) ◽  
pp. 245 ◽  
Author(s):  
Yazeed Altowairqi ◽  
Reza Rezaee ◽  
Milovan Urosevic ◽  
Claudio Delle Piane

While the majority of natural gas is produced from conventional sources, there is significant growth from unconventional sources, including shale-gas reservoirs. To produce gas economically, candidate shale typically requires a range of characteristics, including a relatively high total organic carbon (TOC) content, and it must be gas mature. Mechanical and dynamic elastic properties are also important shale characteristics that are not well understood as there have been a limited number of investigations of well-preserved samples. In this study, the elastic properties of shale samples are determined by measuring wave velocities. An array of ultrasonic transducers are used to measure five independent wave velocities, which are used to calculate the elastic properties of the shale. The results indicated that for the shale examined in this research, P- and S-wave velocities vary depending on the isotropic stress conditions with respect to the fabric and TOC content. It was shown that the isotropic stress significantly impacts velocity. In addition, S-wave anisotropy was significantly affected by increasing stress anisotropy. Stress orientation, with respect to fabric orientation, was found to be an important influence on the degree of anisotropy of the dynamic elastic properties in the shale. Furthermore, the relationship between acoustic impedance (AI) and TOC was established for all the samples.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. E227-E234 ◽  
Author(s):  
Anyela Morcote ◽  
Gary Mavko ◽  
Manika Prasad

Laboratory ultrasonic velocity measurements of different types of coal demonstrate that their dynamic elastic properties depend on coal rank and applied effective pressure. In spite of the growing interest in coal beds as targets for methane production, the high abundance in sedimentary sequences and the strong influence that they have on seismic response, little data are available on the acoustic properties of coal. Velocities were measured in core plugs parallel and perpendicular to lamination surfaces as a function of confining pressure up to [Formula: see text] in loading and unloading cycles. P- and S-wave velocities and dry bulk and dry shear moduli increase as coal rank increases. Thus, bituminous coal and cannel show lower velocities and moduli than higher ranked coals such as semianthracite and anthracite. The [Formula: see text] relationship for dry samples is linear and covers a relatively wide range of effective pressures and coal ranks. However, there is a pressure dependence on the elastic properties of coal for confining pressures below [Formula: see text]. This pressure sensitivity is related to the presence of microcracks. Finally, the data show that coal has an intrinsic anisotropy at confining pressures above [Formula: see text], the closing pressure for most of the microcracks. This intrinsic anisotropy at high pressures might be due to fine lamination and preferred orientation of the macerals.


2021 ◽  
Author(s):  
Mahdi Ramezanian ◽  
Hossein Emadi

Abstract A few researches have been conducted to study effects of cryogenic treatment (known as thermal shocking) on unconventional rock properties, while they have been extensively studied in geothermal projects. The results show that cryogenic treatment significantly alters the rock mechanical properties by creation of new cracks owing to thermally induced stresses resulting in the permeability enhancement. In this laboratory study, effects of cryogenic treatment (thermal shocking) on permeability and dynamic elastic properties of three Wolfcamp core samples (one outcrop and two downhole samples) at downhole conditions were experimentally evaluated. Permeability and dynamic rock mechanical properties were measured before and after conducting each cycle of thermal shock. Using X-ray powder diffraction (XRD) analysis, the mineral compositions of the cores were determined. The results demonstrate that implementing the thermal shock technique on the core samples results in increasing their permeability and ductility.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. N35-N47 ◽  
Author(s):  
Remy Agersborg ◽  
Tor Arne Johansen ◽  
Morten Jakobsen ◽  
Jeremy Sothcott ◽  
Angus Best

The effects of fluid substitution on P- and S-wave velocities in carbonates of complex texture are still not understood fully. The often-used Gassmann equation gives ambiguous results when compared with ultrasonic velocity data. We present theoretical modeling of velocity and attenuation measurements obtained at a frequency of [Formula: see text] for six carbonate samples composed of calcite and saturated with air, brine, and kerosene. Although porosities (2%–14%) and permeabilities [Formula: see text] are relatively low, velocity variations are large. Differences between the highest and lowest P- and S-wave velocities are about 18% and 27% for brine-saturated samples at 60 and [Formula: see text] effective pressure, respectively. S-wave velocities are measured for two orthogonal polarizations; for four of six samples, anisotropy is revealed. TheGassmann model underpredicts fluid-substitution effects by [Formula: see text] for three samples and by as much as 5% for the rest of the six samples. Moreover, when dried, they also show decreasing attenuation with increasing confining pressure. To model this behavior, we examine a pore model made of two pore systems: one constitutes the main and drainable porosity, and the other is made of undrained cracklike pores that can be associated with grain-to-grain contacts. In addition, these dried rock samples are modeled to contain a fluid-filled-pore system of grain-to-grain contacts, potentially causing local fluid flow and attenuation. For the theoretical model, we use an inclusion model based on the [Formula: see text]-matrix approach, which also considers effects of pore texture and geometry, and pore fluid, global- and local-fluid flow. By using a dual-pore system, we establish a realistic physical model consistently describing the measured data.


Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. D235-D242 ◽  
Author(s):  
Ali Reza Najibi ◽  
Mohammad Reza Asef

Laboratory measurement of P- and S-wave velocities ([Formula: see text] and [Formula: see text], respectively) under confining pressure indicates that with an increase in confining pressure, [Formula: see text] and [Formula: see text] will increase. The trend is exponential at low pressures, transitioning to linear above a critical pressure. However, the trend of the velocity-pressure curve for each rock specimen may be determined knowing the coefficients of this curve. We first studied how the coefficients of the velocity-pressure curve were expected to be functions of elastic moduli. Then, four empirical equations were used to estimate four coefficients of the velocity-pressure curve, using the rock density and [Formula: see text] and [Formula: see text] at atmospheric pressure (unconfined conditions). This analysis was carried out based on laboratory experiments on 285 rock specimens of different lithology from around the world, namely the United States, China, Germany, Iran, and deep-sea-drilling projects. For each rock specimen, [Formula: see text] and [Formula: see text] were measured at different confining stress levels, rendering more than 4000 data points. The accuracy of the estimated wave velocities was on the order of 2%–3% of the measured values on average. This methodology is especially valuable for prediction and analysis of the rock behavior at deep well conditions. This is applicable for predicting geophysical properties of the earth’s crust at depth, geomechanical study of hydrocarbon and geothermal reservoirs, wellbore stability analysis, and in situ stress determination.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. D381-D392 ◽  
Author(s):  
Hiroki Sone ◽  
Mark D. Zoback

Understanding the controls on the elastic properties of reservoir rocks is crucial for exploration and successful production from hydrocarbon reservoirs. We studied the static and dynamic elastic properties of shale gas reservoir rocks from Barnett, Haynesville, Eagle Ford, and Fort St. John shales through laboratory experiments. The elastic properties of these rocks vary significantly between reservoirs (and within a reservoir) due to the wide variety of material composition and microstructures exhibited by these organic-rich shales. The static (Young’s modulus) and dynamic (P- and S-wave moduli) elastic parameters generally decrease monotonically with the clay plus kerogen content. The variation of the elastic moduli can be explained in terms of the Voigt and Reuss limits predicted by end-member components. However, the elastic properties of the shales are strongly anisotropic and the degree of anisotropy was found to correlate with the amount of clay and organic content as well as the shale fabric. We also found that the first-loading static modulus was, on average, approximately 20% lower than the unloading/reloading static modulus. Because the unloading/reloading static modulus compares quite well to the dynamic modulus in the rocks studied, comparing static and dynamic moduli can vary considerably depending on which static modulus is used.


2017 ◽  
Vol 5 (1) ◽  
pp. SB69-SB80 ◽  
Author(s):  
Jingjing Xu ◽  
Maojin Tan ◽  
Xiaochang Wang ◽  
Chunping Wu

Estimation of S-wave velocity is one of the most critical steps for prestack seismic inversion. Based on the petrophysical model of fractured carbonate rocks, theoretical methods are firstly investigated for estimating P- and S-wave velocities in the presence of fractures. Then, the methods of calculating elastic properties in fractured carbonate rocks are discussed. The mineral concentration, total porosity, and fracture porosity from core X-ray diffraction and routine core measurements or log interpretation results are used to estimate the P- and S-wave velocities. In the given carbonate rock model, the elastic properties of carbonate rocks with different porosity and fractures are calculated. Two field tests prove that the proposed new method is effective and accurate. Furthermore, the model is useful for fluid identification, which is one of the most outstanding problems for carbonate reservoir description. The simulation results suggest that the larger the fracture porosity is, the easier fluid typing. In Tahe Oilfield, the elastic properties of different fluid zones indicate that bulk modulus and Young’s modulus are more sensitive to fluid than shear modulus, the Lamé constant, and Poisson’s ratio.


Sign in / Sign up

Export Citation Format

Share Document