scholarly journals A comprehensive research in chemical consolidator/stabilizer agents on sand production control

Author(s):  
Mohammad Azadi Tabar ◽  
Hadi Bagherzadeh ◽  
Abbas Shahrabadi ◽  
Sadegh Dahim

AbstractSand or fine is a typical product in many processing of oil production from unconsolidated and weakly consolidated formations. High variation of in situ stress, fluid production rate above maximum sand-free rate, and water production are main primary sources of the sand production. Sand production can cause hazardous operational problems to the facilities, pipes, and wellbore. Hence, it is a significant problem that requires to be managed and studied. To minimize the operational impacts of particle migration, chemical consolidators/stabilizers can be utilized to alter surface properties of sand and formation particles. The decreasing zeta potential besides increasing the cohesion between sand and formation particles could result in controlled sand production. However, understanding the mechanism and application of chemical methods to alleviate sand production is not well-discussed. This study presents and discusses chemical consolidator/stabilizer agents, which may be applied for managing sand production in the petroleum industry. This was achieved through a comprehension review of the literature and the application of chemical consolidators/stabilizers in other fields such as bauxite residue (red mud and red sand) control, desert sand, mine reclamation, wind erosion control, unpaved road modification, and enhancement of water retention and soil infiltration properties that are similar to formation sand. Standard experimental methods in various fields, for performance analysis of chemical consolidator/stabilizer agents, are compared and summarized. The consolidation/stabilization mechanisms of various types of chemical consolidator/stabilizer agents are discussed and compared. This review potentially can be used to inhibit blind usage of chemicals and functions as a reference to additional research in sand production control in petroleum engineering. The results are appropriate for extending quantitative approaches for performance evaluation of sand consolidator/stabilizer agents.

2010 ◽  
Vol 50 (1) ◽  
pp. 623 ◽  
Author(s):  
Khalil Rahman ◽  
Abbas Khaksar ◽  
Toby Kayes

Mitigation of sand production is increasingly becoming an important and challenging issue in the petroleum industry. This is because the increasing demand for oil and gas resources is forcing the industry to expand its production operations in more challenging unconsolidated reservoir rocks and depleted sandstones with more complex well completion architecture. A sand production prediction study is now often an integral part of an overall field development planning study to see if and when sand production will be an issue over the life of the field. The appropriate type of sand control measures and a cost-effective sand management strategy are adopted for the field depending on timing and the severity of predicted sand production. This paper presents a geomechanical modelling approach that integrates production or flow tests history with information from drilling data, well logs and rock mechanics tests. The approach has been applied to three fields in the Australasia region, all with different geological settings. The studies resulted in recommendations for three different well completion and sand control approaches. This highlights that there is no unique solution for sand production problems, and that a robust geomechanical model is capable of finding a field-specific solution considering in-situ stresses, rock strength, well trajectory, reservoir depletion, drawdown and perforation strategy. The approach results in cost-effective decision making for appropriate well/perforation trajectory, completion type (e.g. cased hole, openhole or liner completion), drawdown control or delayed sand control installation. This type of timely decision making often turns what may be perceived as an economically marginal field development scenario into a profitable project. This paper presents three case studies to provide well engineers with guidelines to understanding the principles and overall workflow involved in sand production prediction and minimisation of sand production risk by optimising completion type.


2021 ◽  
Vol 10 ◽  
pp. 40-46
Author(s):  
Văn Hùng Nguyễn ◽  
Thị Thuỳ Linh Bùi

Sand production is a key issue when selecting and applying completion solutions like open holes, screens or perforated liners. This problem can be seen in several types of reservoirs such as weakly consolidated and non-consolidated carbonates. The paper presents a method to model wellbore failures for sanding prediction. Our study shows that the potential sand risk in this field is defined by the rock strength rather than the in-situ stress. If the rock is sufficiently competent, the potential of sand production is negligible, and the development wells can be completed conventionally without any downhole sand control for the reservoir pressure above 1,280 psi and the maximum drawdown pressure of 2,380 psi.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Son Tung Pham

This paper aims to develop a numerical model that can be used in sand control during production phase of an oil and gas well. The model is able to predict not only the onset of sand production using critical bottom hole pressure inferred from geomechanical modelling, but also the mass of sand produced versus time as well as the change of porosity versus space and time using hydromechanical modelling. A detailed workflow of the modelling was presented with each step of calculations. The empirical parameters were calibrated using laboratory data. Then the modelling was applied in a case study of an oilfield in Cuu Long basin. In addition, a sensitivity study of the effect of drawdown pressure was presented in this paper. Moreover, a comparison between results of different hydromechanical models was also addressed. The outcome of this paper demonstrated the possibility of modelling the sand production mass in real cases, opening a new approach in sand control in petroleum industry.


2009 ◽  
Vol 67 (1-2) ◽  
pp. 34-40 ◽  
Author(s):  
M.R. Talaghat ◽  
F. Esmaeilzadeh ◽  
D. Mowla

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250466
Author(s):  
Fahd Saeed Alakbari ◽  
Mysara Eissa Mohyaldinn ◽  
Mohammed Abdalla Ayoub ◽  
Ali Samer Muhsan ◽  
Ibnelwaleed A. Hussein

Sand management is essential for enhancing the production in oil and gas reservoirs. The critical total drawdown (CTD) is used as a reliable indicator of the onset of sand production; hence, its accurate prediction is very important. There are many published CTD prediction correlations in literature. However, the accuracy of most of these models is questionable. Therefore, further improvement in CTD prediction is needed for more effective and successful sand control. This article presents a robust and accurate fuzzy logic (FL) model for predicting the CTD. Literature on 23 wells of the North Adriatic Sea was used to develop the model. The used data were split into 70% training sets and 30% testing sets. Trend analysis was conducted to verify that the developed model follows the correct physical behavior trends of the input parameters. Some statistical analyses were performed to check the model’s reliability and accuracy as compared to the published correlations. The results demonstrated that the proposed FL model substantially outperforms the current published correlations and shows higher prediction accuracy. These results were verified using the highest correlation coefficient, the lowest average absolute percent relative error (AAPRE), the lowest maximum error (max. AAPRE), the lowest standard deviation (SD), and the lowest root mean square error (RMSE). Results showed that the lowest AAPRE is 8.6%, whereas the highest correlation coefficient is 0.9947. These values of AAPRE (<10%) indicate that the FL model could predicts the CTD more accurately than other published models (>20% AAPRE). Moreover, further analysis indicated the robustness of the FL model, because it follows the trends of all physical parameters affecting the CTD.


2006 ◽  
Vol 306-308 ◽  
pp. 1509-1514 ◽  
Author(s):  
Jing Feng ◽  
Qian Sheng ◽  
Chao Wen Luo ◽  
Jing Zeng

It is very important to study the pristine stress field in Civil, Mining, Petroleum engineering as well as in Geology, Geophysics, and Seismology. There are various methods of determination of in-situ stress in rock mass. However, hydraulic fracturing techniques is the most convenient method to determine and interpret the test results. Based on an hydraulic fracturing stress measurement campaign at an underground liquefied petroleum gas storage project which locates in ZhuHai, China, this paper briefly describes the various uses of stress measurement, details of hydraulic fracturing test system, test procedure adopted and the concept of hydraulic fracturing in arriving at the in-situ stresses of the rock mass.


2021 ◽  
Author(s):  
Emily Ako ◽  
Erasmus Nnanna ◽  
Odumodu Somtochukwu ◽  
Akinmade Moradeke

Abstract Chemical Sand Consolidation (SCON) has been used as a means of downhole sand control in Niger Delta since the early 70s. The countries where SCON has been used include Nigeria (Niger Delta), Gabon (Gamba) and UK (North Sea). SCON provides grain-to-grain cementation and locks formation fines in place through the process of adsorption of the sand grains and subsequent polymerization of the resin at elevated well temperatures. The polymerized resin serves to consolidate the surfaces of the sand grain while retaining permeability through the pore spaces. In a typical Niger Delta asset, over 30% of the wells may be completed with SCON. A high percentage are still producing without failure since installation from1970s. Where the original SCON jobs have failed, re-consolidation has also been carried out successfully. Chemical Sand Consolidation development has evolved over the years from: Eposand 112A and B, Eposand 212A and B, Wellfix 2000, Wellfix 3000, Sandstop (resin based), Sandtrap 225, 350 & 500 (resin based) and lately Sandtrap 225,350, 500 (solvent based) and Sandtrap ABC (aqueous based). There have been mixed results experienced with the deployment of either of the latest recipes of SCON. This was due to the fact that the conventional deployment work procedure was followed with the tendency for one-size-fits-all approach to the treatment. This paper details the challenges faced with sand production in ARAMU037, the previous interventions and how an integrated approach to the design and delivery of the most recent intervention restored the way to normal production. The well has now produced for about 2 years with minimal interruption with the activity paying out in less than 6 months. The paper also recommends the best practice for remedial sand control especially for wells in mature assets.


2015 ◽  
Author(s):  
Robert D. Barree ◽  
Jennifer L. Miskimins

Abstract In 1898, Kirsch published equations describing the elastic stresses around a circular hole that are still used today in wellbore pressure breakdown calculations. These equations are standard instruments used in multiple areas of petroleum engineering, however, the original equations were developed strictly for vertical well settings. In today's common directional or horizontal well situations, the equations need adjusted for both deviation from the vertical plane and orientation to the maximum and minimum horizontal in-situ stress anisotropy. This paper provides the mathematical development of these modified breakdown equations, along with examples of the implications in varying strike-slip and pore pressure settings. These examples show conditions where it is not unusual for breakdown pressure gradients to exceed 1.0 psi/ft and describes why certain stages in "porpoising" horizontal wells experience extreme breakdown issues during hydraulic fracturing treatments. The paper also discusses how, in most directional situations, the wellbore will almost always fail initially in a longitudinal direction at the borehole wall, after which the far-field stresses will take over and transverse components can be developed. Tortuosity and near wellbore friction pressure can actually add to forcing the initiation of such longitudinal fractures, which can then have cascading effects on other growth parameters such as cluster-to-cluster and stage-to-stage stress shadowing. Special considerations for highly laminated anisotropic formations, where shear failure of the wellbore may precede or preclude tensile failure, are also introduced. Such failure behaviors have significant implications on near wellbore conductivity requirements and can also greatly impact well production and recovery efforts.


2015 ◽  
Author(s):  
R.N.. N. Naidu ◽  
E.A.. A. Guevara ◽  
A.J.. J. Twynam ◽  
J.. Rueda ◽  
W.. Dawson ◽  
...  

Abstract Hydraulic fracturing is a commonly used completion approach for extracting hydrocarbon resources from formations, particularly in those formations of very low permeability. As part of this process the use of Diagnostic Fracture Injection Tests (DFIT) can provide valuable information. When the measured pressures in such tests are outside the expected range for a given formation, a number of possibilities and questions will arise. Such considerations may include: What caused such inflated pressures? What is the in-situ stress state? Was there a mechanical or operational problem? Was the test procedure or the test equipment at fault? What else can explain the abnormal behaviour? While there may not be simple answers to all of these questions, such an experience can lead to a technically inaccurate conclusion based on inadequate analysis. A recently completed project faced just such a challenge, initially resulting in poor hydraulic fracturing efficiency and a requirement to understand the root causes. In support of this, a thorough analysis involving a multi-disciplinary review team from several technical areas, including petrophysics, rock/geo-mechanics, fluids testing/engineering, completions engineering, hydraulic fracture design and petroleum engineering, was undertaken. This paper describes the evolution of this study, the work performed, the results and conclusions from the analysis. The key factors involved in planning a successful DFIT are highlighted with a general template and a work process for future testing provided. The importance of appreciating the impact of the drilling and completion fluids composition, their properties and their compatibility with the formation fluids are addressed. The overall process and technical approach from this case study in tight gas fields, will have applicability across similar fields and the lessons learned could help unlock those reserves that are initially deemed technically or even commercially unattractive due to abnormal or unexpected behaviour measured during a DFIT operation.


Sign in / Sign up

Export Citation Format

Share Document