Comparative Studies on Structure-Property Relationships of the Polyimide Films Derived from the Dianhydride containing Alicyclic cis-Ethylenic Double Bond

2019 ◽  
Vol 27 (7) ◽  
pp. 703-712 ◽  
Author(s):  
Haixia Qi ◽  
Qingmin Liu ◽  
Anran Zhang ◽  
Feng Liu ◽  
Ning Zhang
ChemSusChem ◽  
2014 ◽  
Vol 7 (12) ◽  
pp. 3396-3406 ◽  
Author(s):  
Hairong Li ◽  
Teck Ming Koh ◽  
Yan Hao ◽  
Feng Zhou ◽  
Yuichiro Abe ◽  
...  

1990 ◽  
Vol 214 ◽  
Author(s):  
Diane M. Stoakleya ◽  
Anne K. St. Clair

ABSTRACTStudies have been conducted at NASA Langley establishing structure-property relationships in polyimides that provide a means of lowering dielectric constants by reducing chain-chain electronic interactions and by incorporation of fluorine into the polymer molecular structure. The resulting polyimides exhibit excellent thermal stability and mechanical strength, improved resistance to moisture and enhanced solubility. Most polyimides containing fluorine in only one monomer are at least partially soluble in common organic solvents, and polyimides containing fluorine in both the dianhydride and the diamine are fully soluble. Although this enhanced solubility aides processability and is desirable for many applications, it is a severe disadvantage for aircraft applications where exposure to hydraulic fluids and other chemicals is likely to occur. This work involves the development of insoluble, low dielectric polymers prepared from 2, 2-bis[4-(3, 4-dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride (BFDA) and selected fluorine-containing diamines.BFDA-containing polyimide films had dielectric constants that ranged from 2.44 to 2.53 at 10 GHz and exhibited insolubility in solvents including N, N-dimethylacetamide, chloroform, diglyme and N-methylpyrrolidinone.


Author(s):  
J. Petermann ◽  
G. Broza ◽  
U. Rieck ◽  
A. Jaballah ◽  
A. Kawaguchi

Oriented overgrowth of polymer materials onto ionic crystals is well known and recently it was demonstrated that this epitaxial crystallisation can also occur in polymer/polymer systems, under certain conditions. The morphologies and the resulting physical properties of such systems will be presented, especially the influence of epitaxial interfaces on the adhesion of polymer laminates and the mechanical properties of epitaxially crystallized sandwiched layers.Materials used were polyethylene, PE, Lupolen 6021 DX (HDPE) and 1810 D (LDPE) from BASF AG; polypropylene, PP, (PPN) provided by Höchst AG and polybutene-1, PB-1, Vestolen BT from Chemische Werke Hüls. Thin oriented films were prepared according to the method of Petermann and Gohil, by winding up two different polymer films from two separately heated glass-plates simultaneously with the help of a motor driven cylinder. One double layer was used for TEM investigations, while about 1000 sandwiched layers were taken for mechanical tests.


Author(s):  
Barbara A. Wood

A controversial topic in the study of structure-property relationships of toughened polymer systems is the internal cavitation of toughener particles resulting from damage on impact or tensile deformation.Detailed observations of the influence of morphological characteristics such as particle size distribution on deformation mechanisms such as shear yield and cavitation could provide valuable guidance for selection of processing conditions, but TEM observation of damaged zones presents some experimental difficulties.Previously published TEM images of impact fractured toughened nylon show holes but contrast between matrix and toughener is lacking; other systems investigated have clearly shown cavitated impact modifier particles. In rubber toughened nylon, the physical characteristics of cavitated material differ from undamaged material to the extent that sectioning of heavily damaged regions by cryoultramicrotomy with a diamond knife results in sections of greater than optimum thickness (Figure 1). The detailed morphology is obscured despite selective staining of the rubber phase using the ruthenium trichloride route to ruthenium tetroxide.


2020 ◽  
Author(s):  
Alex Stafford ◽  
Dowon Ahn ◽  
Emily Raulerson ◽  
Kun-You Chung ◽  
Kaihong Sun ◽  
...  

Driving rapid polymerizations with visible to near-infrared (NIR) light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. Improving efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to NIR light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (< 1 mW/cm<sup>2</sup>) and catalyst loadings (< 50 μM), exemplified by reaction completion within 60 seconds of irradiation using green, red, and NIR light-emitting diodes.


2019 ◽  
Vol 18 (13) ◽  
pp. 1796-1814 ◽  
Author(s):  
Sk. Abdul Amin ◽  
Nilanjan Adhikari ◽  
Tarun Jha ◽  
Shovanlal Gayen

Camptothecin (CPT), obtained from Camptotheca acuminata (Nyssaceae), is a quinoline type of alkaloid. Apart from various traditional uses, it is mainly used as a potential cytotoxic agent acting against a variety of cancer cell lines. Though searches have been continued for last six decades, still it is a demanding task to design potent and cytotoxic CPTs. Different CPT analogs are synthesized to enhance the cytotoxic potential as well as to increase the pharmacokinetic properties of these analogs. Some of these analogs were proven to be clinically effective in different cancer cell lines. In this article, different CPT analogs have been highlighted extensively to get a detail insight about the structure-property relationships as well as different quantitative structure-activity relationships (QSARs) modeling of these analogs are also discussed. This study may be beneficial for designing newer CPT analogs in future.


1990 ◽  
Vol 21 (6) ◽  
pp. 1527-1540 ◽  
Author(s):  
D. V. Edmonds ◽  
R. C. Cochrane

Author(s):  
Praveen Naik ◽  
Kavya S. Keremane ◽  
Mohamed R. Elmorsy ◽  
Ahmed El‐Shafei ◽  
Airody Vasudeva Adhikari

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 806
Author(s):  
Philipp Marx ◽  
Frank Wiesbrock

Commonly, volumetric shrinkage occurs during polymerizations due to the shortening of the equilibrium Van der Waals distance of two molecules to the length of a (significantly shorter) covalent bond. This volumetric shrinkage can have severe influence on the materials’ properties. One strategy to overcome this volumetric shrinkage is the use of expanding monomers that show volumetric expansion during polymerization reactions. Such monomers exhibit cyclic or even oligocyclic structural motifs with a correspondingly dense atomic packing. During the ring-opening reaction of such monomers, linear structures with atomic packing of lower density are formed, which results in volumetric expansion or at least reduced volumetric shrinkage. This review provides a concise overview of expanding monomers with a focus on the elucidation of structure-property relationships. Preceded by a brief introduction of measuring techniques for the quantification of volumetric changes, the most prominent classes of expanding monomers will be presented and discussed, namely cycloalkanes and cycloalkenes, oxacycles, benzoxazines, as well as thiocyclic compounds. Spiroorthoesters, spiroorthocarbonates, cyclic carbonates, and benzoxazines are particularly highlighted.


Sign in / Sign up

Export Citation Format

Share Document