scholarly journals Comparative genomic and functional analysis of Akkermansia muciniphila and closely related species

2019 ◽  
Vol 41 (11) ◽  
pp. 1253-1264 ◽  
Author(s):  
Juyuan Xing ◽  
Xiaobo Li ◽  
Yingjiao Sun ◽  
Juanjuan Zhao ◽  
Shaohua Miao ◽  
...  
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10343
Author(s):  
Pattsarun Cheawchanlertfa ◽  
Sawannee Sutheeworapong ◽  
Piroon Jenjaroenpun ◽  
Thidathip Wongsurawat ◽  
Intawat Nookaew ◽  
...  

Background Cassava pulp is a promising starch-based biomasses, which consists of residual starch granules entrapped in plant cell wall containing non-starch polysaccharides, cellulose and hemicellulose. Strain CT4T, a novel mesophilic anaerobic bacterium isolated from soil collected from a cassava pulp landfill, has a strong ability to degrade polysaccharides in cassava pulp. This study explored a rarely described species within the genus Clostridium that possessed a group of cassava pulp-degrading enzymes. Methods A novel mesophilic anaerobic bacterium, the strain CT4T, was identified based on phylogenetic, genomic, phenotypic and chemotaxonomic analysis. The complete genome of the strain CT4T was obtained following whole-genome sequencing, assembly and annotation using both Illumina and Oxford Nanopore Technology (ONT) platforms. Results Analysis based on the 16S rRNA gene sequence indicated that strain CT4T is a species of genus Clostridium. Analysis of the whole-genome average amino acid identity (AAI) of strain CT4T and the other 665 closely related species of the genus Clostridium revealed a separated strain CT4T from the others. The results revealed that the genome consisted of a 6.3 Mb circular chromosome with 5,664 protein-coding sequences. Genome analysis result of strain CT4T revealed that it contained a set of genes encoding amylolytic-, hemicellulolytic-, cellulolytic- and pectinolytic enzymes. A comparative genomic analysis of strain CT4T with closely related species with available genomic information, C. amylolyticum SW408T, showed that strain CT4T contained more genes encoding cassava pulp-degrading enzymes, which comprised a complex mixture of amylolytic-, hemicellulolytic-, cellulolytic- and pectinolytic enzymes. This work presents the potential for saccharification of strain CT4T in the utilization of cassava pulp. Based on phylogenetic, genomic, phenotypic and chemotaxonomic data, we propose a novel species for which the name Clostridium manihotivorum sp. nov. is suggested, with the type strain CT4T (= TBRC 11758T = NBRC 114534T).


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251655
Author(s):  
Maurizio Mascarello ◽  
Mario Amalfi ◽  
Pieter Asselman ◽  
Erik Smets ◽  
Olivier J. Hardy ◽  
...  

Tropical forests represent vast carbon stocks and continue to be key carbon sinks and buffer climate changes. The international policy constructed several mechanisms aiming at conservation and sustainable use of these forests. Illegal logging is an important threat of forests, especially in the tropics. Several laws and regulations have been set up to combat illegal timber trade. Despite significant enforcement efforts of these regulations, illegal logging continues to be a serious problem and impacts for the functioning of the forest ecosystem and global biodiversity in the tropics. Microscopic analysis of wood samples and the use of conventional plant DNA barcodes often do not allow to distinguish closely-related species. The use of novel molecular technologies could make an important contribution for the identification of tree species. In this study, we used high-throughput sequencing technologies and bioinformatics tools to obtain the complete de-novo chloroplast genome of 62 commercial African timber species using the genome skimming method. Then, we performed a comparative genomic analysis that revealed new candidate genetic regions for the discrimination of closely-related species. We concluded that genome skimming is a promising method for the development of plant genetic markers to combat illegal logging activities supporting CITES, FLEGT and the EU Timber Regulation.


Sign in / Sign up

Export Citation Format

Share Document