Detailed analysis on nonedible waste feedstock as a renewable cutting fluid for a sustainable machining process

Author(s):  
Chidambaranathan Bibin ◽  
Yuvarajan Devarajan ◽  
Alok Bharadwaj ◽  
Pandurang Y. Patil
2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2020 ◽  
Vol 13 ◽  
Author(s):  
Gaurav Gaurav ◽  
Abhay Sharma ◽  
G S Dangayach ◽  
M L Meena

Background: Minimum quantity lubrication (MQL) is one of the most promising machining techniques that can yield a reduction in consumption of cutting fluid more than 90 % while ensuring the surface quality and tool life. The significance of the MQL in machining makes it imperative to consolidate and analyse the current direction and status of research in MQL. Objective: This study aims to assess global research publication trends and hot topics in the field of MQL among machining process. The bibliometric and descriptive analysis are the tools that the investigation aims to use for the data analysis of related literature collected from Scopus databases. Methods: Various performance parameters are extracted, such as document types and languages of publication, annual scientific production, total documents, total citations, and citations per article. The top 20 of the most relevant and productive sources, authors, affiliations, countries, word cloud, and word dynamics are assessed. The graphical visualisation of the bibliometric data is presented in terms of bibliographic coupling, citation, and co-citation network. Results: The investigation reveals that the International Journal of Machine Tools and Manufacture (2611 citations, 31 hindex) is the most productive journal that publishes on MQL. The most productive institution is the University of Michigan (32 publications), the most cited country is Germany (1879 citations), and the most productive country in MQL is China (124 publications). The study shows that ‘Cryogenic Machining’, ‘Sustainable Machining’, ‘Sustainability’, ‘Nanofluid’ and ‘Titanium alloy’ are the most recent keywords and indications of the hot topics and future research directions in the MQL field. Conclusion: The analysis finds that MQL is progressing in publications and the emerging with issues that are strongly associated with the research. This study is expected to help the researchers to find the most current research areas through the author’s keywords and future research directions in MQL and thereby expand their research interests.


Author(s):  
Xingzheng Chen ◽  
Congbo Li ◽  
Ying Tang ◽  
Li Li ◽  
Hongcheng Li

AbstractMechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.


2021 ◽  
Vol 15 (1) ◽  
pp. 7860-7873
Author(s):  
S. Dhanalakshmi ◽  
T. Rameshbabu

The choice of most appropriate cutting liquid in any machining process should be performed to attain maximum benefit. Selection of cutting fluid needs more than one dimension. For this purpose, many criteria should be deemed in the selection process.  In this study decision making methods such as AHP, TOPSIS and VIKOR are employed to select the suitable cutting fluid. AHP is used to compute the objective weights for the  criteria.The three alternatives considered are Ahonol- 7, Blaser and YBI. A case study of cutting fluid selection for machining LM 25 Aluminium alloy which finds application in automobile industries is presented to explain the applicability and suitability of the anticipated method. Ranking of alternatives in the above methods suggests Ahonol – 7 as the best cutting fluid for CNC turning LM 25 aluminium alloy.


2019 ◽  
Vol 71 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Aqib Mashood Khan ◽  
Muhammad Jamil ◽  
Ahsan Ul Haq ◽  
Salman Hussain ◽  
Longhui Meng ◽  
...  

Purpose Sustainable machining is a global consensus and the necessity to cope up the serious environmental threats. Minimum quantity lubrication (MQL) and nanofluids-based MQL(NFMQL) are state-of-the-art sustainable lubrication modes. The purpose of this study is to investigate the effect of process parameters, such as feed rate, depth of cut and cutting fluid flow rate, on temperature and surface roughness of the manufactured pieces during face milling of the AISI D2 steel. Design/methodology/approach A statistical technique called response surface methodology with Box–Behnken Design was used to design experimental runs, and empirical modeling was presented. Analysis of variance was carried out to evaluate the model’s accuracy and the validation of the applied technique. Findings A comprehensive analysis revealed the superiority of implementing NFMQL in comparison to MQL within the levels of process parameters. The comparison has shown a significant reduction of temperature under NFMQL at the tool-workpiece interface from 16.2 to 34.5 per cent and surface roughness from 11.3 to 12 per cent. Practical implications This research is useful for practitioners to predict the responses in workshop and select appropriate cutting parameters. Moreover, this research will be helpful to reduce the resource which will ultimately save energy consumption and cost. Originality/value To cope with the industrial challenges and tribological issues associated with the milling of AISI D2 steel, experiments were conducted in a distinct machining mode with innovative cooling/lubrication. Until now, few studies have addressed the key lubrication effects of Al2O3-based nanofluid on the machinability of D2 steel under NFMQL lubrication condition.


2019 ◽  
Vol 11 (4) ◽  
pp. 107-121 ◽  
Author(s):  
Chinmaya PADHY ◽  
Pariniti SINGH

Minimum quantity lubrication (MQL) is currently a widely used lubricating technique during machining, in which minimum amount of lubricant in the form of mist is delivered to the machining interface, thus helps to reduce the negative effects caused to the environment and human health. Further, to enhance the productivity of machining process specifically for hard-to-cut materials, nano cutting fluid (suitably mixed nano materials with conventional cutting fluid) is used as an alternative method to conventional lubrication (wet) in MQL. In this study, h-BN nano cutting fluid was formulated with 0.1% vol. concentration of h-BN in conventional cutting fluid (Servo- ‘S’) for NCF-MQL technique and its tribological behaviors on machining(turning) performance of Inconel 625 were studied and compared with other lubricating conditions (dry, wet, MQL conventional). The tribological effects were analyzed in terms of tool wear analysis, chip morphology along with statistical analysis for machined surface and evolved cutting forces during machining. The optimal input machining parameters for experiments were defined by the use of Taguchi and Grey relational based multi response optimization technique. Finally, the tribological study shows that the use of h-BN NCF-MQL is a viable and sustainable option for improving machining performance of hard- to- cut material like Inconel 625.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Vincent A Balogun ◽  
Isuamfon F Edem ◽  
Etimbuk B Bassey

The use of electrical energy and coolants/lubricants has been widely reported in mechanical machining. However, increased research and process innovation in high speed machining has brought about optimised manufacturing cycle times. This has promoted dry machining and the use of minimum quantity lubrication (MQL). This work understudies the impact of different cutting environments in machining H13 tool steel alloys at transition speed regime with emphasis on sustainable machining of the alloy. To achieve this, end milling tests were performed on AISI H13 steel alloy (192 BHN) on a MIKRON HSM 400 high speed machining centre using milling inserts. After each cutting pass, the milling insert was removed for tool wear measurement on the digital microscope. The electrical power consumed was measured with the Fluke 435 power clamp meter mounted on the three phase cable at the back of the machine. It was discovered that MQL has a promising advantage in terms of tool life with 25 minutes of machining, net power requirement of 10% when compared to dry cutting, and environmental benefits when machining H13 tool steel alloy. This work is fundamentally important in assessing the environmental credentials and resource efficiency regime for green machining of H13 tool steel alloysKeywords— H13 tool steel, green machining, process optimization, tool life, cutting environments, energy consumption 


Author(s):  
S. Devaraj ◽  
M. Ramakrishna ◽  
B. Singaravel

Metal Matrix Composite (MMC) has better mechanical properties and it is possible to produce near net shape. Aluminum-based MMC (Al-MMC) has challenges in terms of machinability studies and estimation of its optimum process parameters. Alternative cutting fluid research is a challenging area in machining. To avoid, existing hydrocarbon oil-based cutting fluid, textured inserts embedded with a solid lubricant are one of the alternative solutions. Micro hole textured inserts make a hole on the rake face of the cutting tool inserts. Texture includes various important design parameters namely hole diameter, hole depth and pitch between the holes. These optimum parameters influence the machining process. In this work, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used to find the optimum design parameters (hole diameter, hole depth and pitch between holes) during turning of Al- MMC. The objective parameters considered are minimization of surface roughness, power consumption and tool flank wear. The optimum combination of these design parameters is obtained by the higher relative closeness value of the TOPSIS method. The result of the investigation revealed that these design parameters are important to obtain improved machining performance. Also, it is understood that the TOPSIS method has an appropriate procedure to solve multiple objective optimization problems in manufacturing industries.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2088 ◽  
Author(s):  
Munish Gupta ◽  
Catalin Pruncu ◽  
Mozammel Mia ◽  
Gurraj Singh ◽  
Sunpreet Singh ◽  
...  

With regard to the manufacturing of innovative hard-machining super alloys (i.e., Inconel-800), a potential alternative for improving the process is using a novel cutting fluid approach. Generally, the cutting fluids allow the maintenance of a better tool topography that can generate a superior surface quality of machined material. However, the chemical components of fluids involved in that process may produce harmful effects on human health and can trigger environmental concerns. By decreasing the cutting fluids amount while using sustainable methods (i.e., dry), Near Dry Machining (NDM) will be possible in order to resolve these problems. This paper discusses the features of two innovative techniques for machining an Inconel-800 superalloy by plain turning while considering some critical parameters such as the cutting force, surface characteristics (Ra), the tool wear rate, and chip morphology. The research findings highlight the near-dry machining process robustness over the dry machining routine while its great potential to resolve the heat transfer concerns in this manufacturing method was demonstrated. The results confirm other benefits of these methods (i.e., NDM) linked to the sustainability aspects in terms of the clean process, friendly environment, and permits as well as in terms of improving the manufacturing characteristics.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
S. Niketh ◽  
G. L. Samuel

Abstract The real challenge pertaining to high aspect ratio drilling is the rapid increase in chip evacuation force due to the chip clogging phenomenon occurring at higher drilling depths. The clogged chips will further impede the reachability of cutting fluid at the machining zone leading to the tool temperature buildup. This will eventually result in the catastrophic failure of the tool. Hence, in the present work, an attempt has been made to minimize the chip evacuation force by functionalizing the drill tool surfaces based on the laser microtexturing principle. Microscale textures in the form of circular dimples were created on the flute and margin side of the drill tool with an objective to control the sliding friction, thereby minimizing the chip clogging effect. The effectiveness of the functionalized drill tools were assessed mainly based on the variation in thrust force and torque. Drilling experiments showed a net reduction of 17.18% in thrust force and 26.98% in torque while machining Ti–6Al–4V using the flute and margin textured tool, which justified the effectiveness of micro scale textures in minimizing the chip evacuation forces. The experimental analysis was further extended in terms of burr height evaluation, where FMT tools were found to be highly effective in burr height reduction (1.29 mm), showing a net reduction of 54.26% when compared with the non-textured tool. The outcomes from this research work will be highly beneficial for the manufacturing industries including aerospace, automobile, and spacecraft as high aspect ratio drilling of titanium alloys are still categorized to be the most challenging machining process owing to its lower thermal conductive property.


Sign in / Sign up

Export Citation Format

Share Document