Viscosity and thermal conductivity of ZnO–water-based nanofluids stabilized by grafted SMA-g-MPEG comb-shaped copolymer for heat transfer applications

2020 ◽  
Vol 29 (2) ◽  
pp. 185-196 ◽  
Author(s):  
K. S. Pavithra ◽  
M. P. Yashoda ◽  
S. Prasannakumar ◽  
Srinivas Mutalik
2012 ◽  
Vol 736 ◽  
pp. 223-228
Author(s):  
M.M. Ghosh ◽  
S. Ghosh ◽  
S.K. Pabi

A model reported by the present investigators has earlier shown that the extent of heat pick up by a nanoparticle during its collision with the heat source in a given nanofluid would depend on the thermal conductivity (kp, unit W/m.K), density (ρ, unit kg/m3), elastic modulus (E, unit GPa) and Poissons ratio (μ) of the nanoparticle and heat source. Considering the expression for collision period and thermal conductivity of nanoparticle, a factor χ =kp(ρ/E)0.4 is proposed here and examined for the preliminary identification of the potential of a dispersoid in enhancing the thermal conductivity of a nanofluid. The χ-factor for Ag, Cu, CuO, Al2O3 and SiO2 are 2960, 2247, 116, 14.1 and 5.5, respectively. The higher χ-factor of CuO compared to that of Al2O3 can explain why water and ethylene glycol (EG) based CuO-nanofluid is reported to show higher enhancement in the thermal conductivity, when compared to similar Al2O3-nanofluid. The χ for SiO2 is much smaller than that for Ag, which also corroborates well with the marginal enhancement in thermal conductivity of water based nanofluid containing SiO2 nanoparticles. Therefore, a high value of χ of the nanodispersoid can serve as a parameter for the design of nanofluids for heat transfer applications.


2021 ◽  
Vol 321 ◽  
pp. 01003
Author(s):  
Divya Barai ◽  
Sohan Parbat ◽  
Bharat Bhanvase

Bio-based graphitic carbon was synthesized in this work by one-step carbonization of bamboo waste at low temperature. This bio-based carbon was then functionalized in order to decorated it with Fe3O4 nanoparticles. The functionalized biocarbon-Fe3O4 (f-biocarbon-Fe3O4) nanocomposite was synthesized using ultrasound-assisted coprecipitation method which was then confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffractometry. Water-based nanofluid was prepared using the synthesized f-biocarbon-Fe3O4 nanocomposite particles. Thermal conductivity of this nanofluid was analyzed at different concentrations and temperatures. A thermal conductivity enhancement of almost 80% was recorded at 35°C for nanofluid containing 0.1 vol.% of f-biocarbon-Fe3O4 nanocomposite particles compared to water. Also, empirical model is developed for prediction of thermal conductivity as a function of concentration and temperature of bamboo waste-derived f-biocarbon-Fe3O4 nanocomposite-based green nanofluid.


Author(s):  
J. Tielke ◽  
M. Maas ◽  
M. Castillo ◽  
K. Rezwan ◽  
M. Avila

Nanofluids are suspensions of nanoparticles in a base heat-transfer liquid. They have been widely investigated to boost heat transfer since they were proposed in the 1990s. We present a statistical correlation analysis of experimentally measured thermal conductivity of water-based nanofluids available in the literature. The influences of particle concentration, particle size, temperature and surfactants are investigated. For specific particle materials (alumina, titania, copper oxide, copper, silica and silicon carbide), separate analyses are performed. The conductivity increases with the concentration in qualitative agreement with Maxwell’s theory of homogeneous media. The conductivity also increases with the temperature (in addition to the improvement due to the increased conductivity of water). Surprisingly, only silica nanofluids exhibit a statistically significant effect of the particle size, whereby smaller particles lead to faster heat transfer. Overall, the large scatter in the experimental data prevents a compelling, unambiguous assessment of these effects. Taken together, the results of our analysis suggest that more comprehensive experimental characterizations of nanofluids are necessary to estimate their practical potential.


Author(s):  
Binglu Ruan ◽  
Anthony M. Jacobi

The thermal conductivity and viscosity of water-based and ethylene-glycol-based multiwall carbon nanotube (MWCNT) suspensions are measured for MWCNT volume concentrations up to 0.24%. The thermal conductivity is found to increase up to 8.6% and 9.3% for water-based and ethylene-glycol-based nanofluids, respectively. The viscosity of the nanofluids increases compared to that of their base fluids, with larger increases for the ethylene-glycol-based nanofluids. Intertube falling-film heat transfer characteristics of these nanofluids are measured and compared to data for the base fluids. The heat transfer coefficient of the water-based nanofluids decreases at low MWCNT concentrations but increases as the concentration increases. The heat transfer coefficient of the ethylene-glycol-based nanofluids decreases with an increase in MWCNT concentration, with a maximum deviation of 30%.


2015 ◽  
Vol 1128 ◽  
pp. 384-389
Author(s):  
Madalina Georgiana Moldoveanu ◽  
Alina Adriana Minea

Application of nanoparticles provides an effective way of improving heat transfer characteristics of fluids. Particles less than 100 nm in diameter exhibit different properties from those of conventional solids. Compared with micron-sized particles, nanophase powders have much larger relative surface areas and a great potential for heat transfer enhancement. Some researchers tried to suspend nanoparticles into fluids to form high effective heat transfer fluids. Some preliminary experimental results showed that increase in thermal conductivity of approximately 60% can be obtained for some nanofluids consisting of water and 5 vol% CuO nanoparticles. So, the thermal conductivity of nanofluid was found to be strongly dependent on the nanoparticle volume fraction. So far it has been an unsolved problem to develop a sophisticated theory to predict thermal conductivity of nanofluids, although there are some semi empirical correlations to calculate the apparent conductivity of two-phase mixture. In this article, several correlations for predicting the nanofluid thermal conductivity will be compared and results will be discussed for three water based nanofluids.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
W. Y. Lai ◽  
S. Vinod ◽  
P. E. Phelan ◽  
Ravi Prasher

Nanofluids are colloidal solutions, which contain a small volume fraction of suspended submicron particles or fibers in heat transfer liquids such as water or glycol mixtures. Compared with the base fluid, numerous experiments have generally indicated an increase in effective thermal conductivity and a strong temperature dependence of the static effective thermal conductivity. However, in practical applications, a heat conduction mechanism may not be sufficient for cooling high heat dissipation devices such as microelectronics or powerful optical equipment. Thus, thermal performance under convective heat transfer conditions becomes of primary interest. We report here the heat transfer coefficient h in both developing and fully developed regions by using water-based alumina nanofluids. Our experimental test section consists of a single 1.02-mm diameter stainless steel tube, which is electrically heated to provide a constant wall heat flux. Both pressure drop and temperature differences are measured, but mostly here we report our h measurements under laminar flow conditions. An extensive characterization of the nanofluid samples, including pH, electrical conductivity, particle sizing, and zeta potential, is also documented. The measured h values for nanofluids are generally higher than those for pure water. In the developing region, this can be at least partially explained by Pr number effects.


Author(s):  
Tae Y. Choi ◽  
Mohammad H. Maneshian ◽  
Boseon Kang

A modified 3-ω method applied to a suspended platinum microwire was employed to measure the thermal conductivity and convective heat transfer coefficient of water-based single-walled carbon nanotubes (CNT) solution, and an expression for calculating the convective heat transfer coefficient in a free convective fluid was introduced. The measurement technique was validated for three model systems including vacuum, air, and deionized water. It is found that there is excellent agreement of these three model systems with theoretical predictions. In addition, the frequency dependence on the third harmonic response measured in deionized water reveals existence of a very low working frequency below 60 mHz. The thermal conductivity and convective heat transfer coefficient of a nanofluid (water-based single wall CNTs colloidal suspension) were determined to be 0.73±0.013 W/m·K and 14900±260 W/m2·K respectively, which corresponds to enhancement of 19.4% in thermal conductivity and 18.9% in convective heat transfer as compared to water.


2018 ◽  
Vol 280 ◽  
pp. 36-42 ◽  
Author(s):  
H. Haiza ◽  
I.I. Yaacob ◽  
Ahmad Zahirani Ahmad Azhar

Magnetic magnetite, Fe3O4 nanoparticles produced by Massart’s procedure were used to prepare water based magnetite, Fe3O4 ferrofluids without addition of any stabilizing agent or surfactant. The thermal properties and suspension stabilization of the ferrofluids were investigated by varying the magnetite, Fe3O4 nanoparticles concentration in the ferrofluids prepared. The thermal conductivity of water based ferrofluids prepared using five different volume fraction of magnetite, Fe3O4 suspension (0.1, 0.05, 0.02, 0.01 and 0.005) were measured at five different temperature, 25°C, 30°C, 40°C, 50°C and 60°C in order to evaluate its potential application as heat transfer fluid. The results shows that the thermal conductivity of the ferrofluids are higher than the base fluid, and the thermal conductivity of the ferrofluids increased as the magnetite concentration in the ferrofluids decreased however reached its optimum for ferrofluids prepared using 0.01 volume fraction of magnetite suspension over 0.99 volume fraction of water. Accordingly, the thermal conductivity of the ferrofluids significantly increased as the temperature increased where 49.4% enhancement with respect to water were observed at temperature 60°C.


Sign in / Sign up

Export Citation Format

Share Document