Investigation of the adsorption capacity of olive-waste cake activated carbon for removal of metribuzin from aqueous solutions

Author(s):  
D. Angin ◽  
A. Ilci
Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2241
Author(s):  
Rauf Foroutan ◽  
Seyed Jamaleddin Peighambardoust ◽  
Seyed Hadi Peighambardoust ◽  
Mirian Pateiro ◽  
Jose M. Lorenzo

Activated carbon prepared from lemon (Citrus limon) wood (ACL) and ACL/Fe3O4 magnetic nanocomposite were effectively used to remove the cationic dye of crystal violet (CV) from aqueous solutions. The results showed that Fe3O4 nanoparticles were successfully placed in the structure of ACL and the produced nanocomposites showed superior magnetic properties. It was found that pH was the most effective parameter in the CV dye adsorption and pH of 9 gave the maximum adsorption efficiency of 93.5% and 98.3% for ACL and ACL/Fe3O4, respectively. The Dubinin–Radushkevich (D-R) and Langmuir models were selected to investigate the CV dye adsorption equilibrium behavior for ACL and ACL/Fe3O4, respectively. A maximum adsorption capacity of 23.6 and 35.3 mg/g was obtained for ACL and ACL/Fe3O4, respectively indicating superior adsorption capacity of Fe3O4 nanoparticles. The kinetic data of the adsorption process followed the pseudo-second order (PSO) kinetic model, indicating that chemical mechanisms may have an effect on the CV dye adsorption. The negative values obtained for Gibb’s free energy parameter (−20 < ΔG < 0 kJ/mol) showed that the adsorption process using both types of the adsorbents was physical. Moreover, the CV dye adsorption enthalpy (ΔH) values of −45.4 for ACL and −56.9 kJ/mol for ACL/Fe3O4 were obtained indicating that the adsorption process was exothermic. Overall, ACL and ACL/Fe3O4 magnetic nanocomposites provide a novel and effective type of adsorbents to remove CV dye from the aqueous solutions.


2017 ◽  
Vol 3 (1) ◽  
pp. 10 ◽  
Author(s):  
Saad A Alkahtani ◽  
Samer S Abu-Alrub ◽  
Ashraf M Mahmoud

<p>The adsorption behavior of Allura red (E129)<strong> </strong>from aqueous solutions onto activated carbon was successfully investigated. All factors affecting the adsorption process were carefully studied and the conditions were optimized. Adsorption of E129 onto activated carbon was found to increase by decreasing the mass of activated carbon, pH and ionic strength of the solution and by increasing temperature. The adsorption capacity of the activated carbon for Allura red was relatively high. Under the optimum conditions, the maximum adsorption capacity for E129 dye was 72.85 mg/g. Three adsorption models; Langmuir, Freundlich and Temkin model were investigated regarding the adsorption of E129. The models’ parameters K<sub>L</sub>, qm, R2, (n) were determined and found to be 0.0222, 72.85 mg/g, 0.9057-0.9984, and 0.992, respectively. Also, pseudo first and second-order kinetic models were tested to determine the best-fit model to the adsorption of E129 dye onto activated carbon. The results showed that the adsorption of E129 onto activated carbon obeyed both the Freundlich isotherm and pseudo second-order kinetic models. Moreover, thermodynamic studies indicated that the adsorption of E129 dye onto the activated carbon was spontaneous. </p>


2019 ◽  
Vol 6 (2) ◽  
pp. 81-88 ◽  
Author(s):  
Dariush Naghipour ◽  
Abdoliman Amouei ◽  
Kamran Taher Ghasemi ◽  
Kamran Taghavi

Background: Metoprolol (MTP) with its low biodegradability is one of the most dominant micropollutant in the effluent of wastewater treatment plants. The aim of this study was to investigate the removal of metoprolol from aqueous solutions by the activated carbon prepared from pine cones. Methods: The pine cones were activated using thermal activation method. Characteristics of the adsorbent were determined using Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM). In this study, the influent of different parameters such as pH, contact time, initial concentrations of metoprolol, adsorbent dose, temperature, adsorption isotherms, and kinetics were investigated. Results: The maximum removal efficiency of MTP (89.2%) was obtained at pH=8.5, adsorbent dose=1.5 g, contact time=60 min, and initial concentration=50 mg/L. By increasing the adsorbent dose, the removal efficiency also increased, but the adsorption capacity decreased, however, by increasing the initial concentration, the removal efficiency decreased, but the adsorption capacity increased. The isotherm experimental data for metoprolol was best fitted using the Langmuir model, and kinetic data were better described by pseudo-second-order kinetic model. The thermodynamic study indicated that the adsorption of MTP by the adsorbent was feasible, spontaneous, and endothermic. Conclusion: MTP removal by the activated carbon prepared from pine cones showed that this natural adsorbent is appropriate for removal of metoprolol from aqueous solutions regarding cost, efficiency, and production method.


2012 ◽  
Vol 610-613 ◽  
pp. 1971-1974
Author(s):  
Zeng Yin Zhu ◽  
Bing Li ◽  
Hai Suo Wu ◽  
Wei Liu ◽  
Jin Wei

As the toxicity even at low concentrations, pollution of phenolic compounds has become an issue of international concern. Adsorption has been proven to be the effective and widely used method for phenolic compounds removal. In this study, porous resins as adsorbents for the removal of hydroquinone from aqueous solutions were evaluated. Activated carbon F400D was employed for comparison. The faster adsorption kinetic was observed on the mesoporous XAD-4, while the higher adsorption capacity was obtained on the microporous NDA150, which had larger surface area. Despite the different surface properties and pore structures of the studied adsorbents, similar trends of pH-dependent adsorption were observed, implying the importance of the hydroquinone molecular species to the adsorption onto the porous adsorbents. This work provided an understanding of adsorption behavior of hydroquinone on porous adsorbents.


Author(s):  
Tayyba Aftab ◽  
Naeem Abbas ◽  
Muhammad Irfan ◽  
Farah Deeba ◽  
Naz Imtiaz ◽  
...  

The objective of the present study was to investigate the adsorption of benzoic acid (BA), valeric acid (VA), propionic acid (PA) and butyric acid (BUA) from aqueous solutions at different dosing rate on the surface of activated carbon. Different trials were taken in order to determine the interaction betweenthe carbon surface and adsorbent species. The residual concentration of acids was calculated by the titrimetric method. Maximum adsorption capacity was found to be 93.37% at dosing rate of 8.75 g for BUA and minimum adsorption capacity was measured as 41.47% at dosing rate of 0.69 g for VA. Keeping the same contact time and mass of activated carbon (2.8 g), the adsorption capacity increases with increasing dosing rate. 


2017 ◽  
Vol 36 (1-2) ◽  
pp. 355-371 ◽  
Author(s):  
Fareeda Hayeeye ◽  
Qiming J Yu ◽  
Memoon Sattar ◽  
Watchanida Chinpa ◽  
Orawan Sirichote

Gelatin and activated carbon materials have been combined together to obtain a gelatin/activated carbon composite bead form which is ecofriendly, nontoxic, biocompatible, and inexpensive material. In this paper, gelatin/activated carbon adsorption for Pb2+ ions from aqueous solutions was studied experimentally under various conditions. The experimental conditions such as contact time, solution pH, and gelatin/activated carbon dosage were examined and evaluated by using batch adsorption experiments. The maximum adsorption capacity of gelatin/activated carbon for Pb2+ ions was obtained to be 370.37 mg g−1. This maximum capacity was comparable with that of commercial ion exchange resins and it was much higher than those of natural zeolites. The uptake process for Pb2+ ions was found to be relatively fast with 92.15% of the adsorption completed in about 5 min in batch conditions. The adsorption capacity was also strongly solution pH dependent. Adsorption was observed at pH value as low as 2.0 and maximum adsorption was achieved at a pH of approximately 5. The results indicated that the gelatin/activated carbon was effective to be used as an adsorbent for Pb2+ ions removal in wastewater treatment.


Desalination ◽  
2010 ◽  
Vol 262 (1-3) ◽  
pp. 94-98 ◽  
Author(s):  
Gulnaziya Issabayeva ◽  
Mohamed Kheireddine Aroua ◽  
Nik Meriam Sulaiman

2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


2018 ◽  
Vol 69 (5) ◽  
pp. 1233-1239
Author(s):  
Raluca Madalina Senin ◽  
Ion Ion ◽  
Ovidiu Oprea ◽  
Rusandica Stoica ◽  
Rodica Ganea ◽  
...  

In this study, non-irradiated and weathered multiwalled carbon nanotubes (MWCNTs) obtained through irradiation, were studied as adsorbents for BPA, both nanomaterials being characterized before and after the adsorption process. The objectives of our investigation were to compare the characteristics of non-irradiated and irradiated MWCNTs, to evaluate the adsorption capacity of BPA by pristine and irradiated MWCNTs and to determine the variation of the kinetic, sorption and thermodynamic parameters during sorption process using both sorbents.


Sign in / Sign up

Export Citation Format

Share Document