scholarly journals ADSORPTION OF FOOD COLORING ALLURA RED DYE (E129) FROM AQUEOUS SOLUTIONS USING ACTIVATED CARBON

2017 ◽  
Vol 3 (1) ◽  
pp. 10 ◽  
Author(s):  
Saad A Alkahtani ◽  
Samer S Abu-Alrub ◽  
Ashraf M Mahmoud

<p>The adsorption behavior of Allura red (E129)<strong> </strong>from aqueous solutions onto activated carbon was successfully investigated. All factors affecting the adsorption process were carefully studied and the conditions were optimized. Adsorption of E129 onto activated carbon was found to increase by decreasing the mass of activated carbon, pH and ionic strength of the solution and by increasing temperature. The adsorption capacity of the activated carbon for Allura red was relatively high. Under the optimum conditions, the maximum adsorption capacity for E129 dye was 72.85 mg/g. Three adsorption models; Langmuir, Freundlich and Temkin model were investigated regarding the adsorption of E129. The models’ parameters K<sub>L</sub>, qm, R2, (n) were determined and found to be 0.0222, 72.85 mg/g, 0.9057-0.9984, and 0.992, respectively. Also, pseudo first and second-order kinetic models were tested to determine the best-fit model to the adsorption of E129 dye onto activated carbon. The results showed that the adsorption of E129 onto activated carbon obeyed both the Freundlich isotherm and pseudo second-order kinetic models. Moreover, thermodynamic studies indicated that the adsorption of E129 dye onto the activated carbon was spontaneous. </p>

2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Hülya Karaca ◽  
Turgay Tay ◽  
Merih Kıvanç

The biosorption of lead ions (Pb2+) onto lyophilized fungus Aspergillus niveus was investigated in aqueous solutions in a batch system with respect to pH, contact time and initial concentration of the ions at 30 °C. The maximum adsorption capacity of lyophilized A. niveus was found to be 92.6 mg g−1 at pH 5.1 and the biosorption equilibrium was established about in 30 min. The adsorption capacity obtained is one of the highest value among those reported in the literature. The kinetic data were analyzed using the pseudo-first-order kinetic, pseudo-second-order kinetic, and intraparticle diffusion equations. Kinetic parameters, such as rate constants, equilibrium adsorption capacities, and related correlation coefficients for the kinetic models were calculated and discussed. It was found that the adsorption of lead ions onto lyophilized A. niveus biomass fit the pseudo-second-order kinetic model well. The Langmuir and Freundlich isotherm parameters for the lead ion adsorption were applied and the Langmuir model agreed better with the adsorption of lead ions onto lyophilized A. niveus.


2013 ◽  
Vol 67 (1) ◽  
pp. 201-209 ◽  
Author(s):  
Edson Luiz Foletto ◽  
Caroline Trevisan Weber ◽  
Diego Silva Paz ◽  
Marcio Antonio Mazutti ◽  
Lucas Meili ◽  
...  

Activated carbon prepared from bottle gourd has been used as adsorbent for removal of leather dye (Direct Black 38) from aqueous solution. The activated carbon obtained showed a mesoporous texture, with surface area of 556.16 m2 g−1, and a surface free of organic functional groups. The initial dye concentration, contact time and pH significantly influenced the adsorption capacity. In the acid region (pH 2.5) the adsorption of dye was more favorable. The adsorption equilibrium was attained after 60 min. Equilibrium data were analyzed by the Langmuir, Freundlich, Dubinin–Radushkevich and Temkin isotherm models. The equilibrium data were best described by the Langmuir isotherm, with maximum adsorption capacity of 94.9 mg g−1. Adsorption kinetic data were fitted using the pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The adsorption kinetic was best described by the second-order kinetic equation. The adsorption process was controlled by both external mass transfer and intraparticle diffusion. Activated carbon prepared from bottle gourd was shown to be a promising material for adsorption of Direct Black 38 from aqueous solution.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-8
Author(s):  
Angelica Macalalad ◽  
◽  
Quennie Rose Ebete ◽  
Dominic Gutierrez ◽  
Madelaine Ramos ◽  
...  

The present study is focused on the use of activated carbon derived from water hyacinth (WH-AC) as adsorbent for the removal of Cr(VI) from aqueous solution. The optimized WH-AC was found to be mesoporous and considered as granular. The surface area of 11.564 m2/g was found to have a good adsorption capacity. The adsorption data of the optimized WH-AC followed a pseudo-second order kinetics and the Freundlich isotherm model. Based on the correlation coefficient obtained from pseudo-second-order kinetic model, the R2 values were all above 0.99, which is closer to unity of one (1) indicating that it followed a chemisorption process. The adsorption capacity of WH-AC increased from 1.98 to 4.68 mg/g when adsorbate concentration increased from 20 to 50 mg/l. The overall study proved that the adsorption by activated carbon derived from water hyacinth can be an alternative and efficient technique in hexavalent chromium removal.


2019 ◽  
Vol 13 (1) ◽  
pp. 77-92 ◽  
Author(s):  
Warren Reátegui-Romero ◽  
Walter J. Cadenas-Vásquez ◽  
María E. King-Santos ◽  
Walter F. Zaldivar Alvarez ◽  
Ricardo A. Y. Posadas

Objectives: The Pb non-biodegradability results in bioaccumulation in living organisms causing serious health disorders. The present study aimed to investigate the capacity of Pb (II) adsorption in aqueous solutions using the Brassica nigra species as biosorbent. Methods: The present study was conducted using a synthetic solution with three Pb (II) concentrations (5, 15, and 30 ppm). The B. nigra was suitably treated until it became dry particles. After sifting it, three ranges of grain sizes were obtained. Samples of dry particles were analyzed before and after the biosorption to analyze their topography (SEM), as well as the elements on their surface (EDS). The influence of different operating variables on the biosorption of Pb (II) were analyzed. Kinetics of Pb (II) biosorption was analyzed with pseudo first and second order models. The biosorption in the equilibrium was studied with the Langmuir isotherm and Freundlich isotherm models. Results: The biosorbent B. nigra showed to be efficient for the adsorption of Pb (II). The most influential variables in the adsorption were pH, particle size, and biosorbent/solution ratio. The optimum pH for the adsorption of lead was 5 and removed 82.10% of lead from solution at 5 ppm, 82.24% at 15 ppm and 57.95% at 30 ppm. The results for the particle size between 177 and 297 μm were 82.65% for 5 ppm, 73.71% for 15 ppm, and 53.54% for 30 ppm. The biosorbent/solution ratio of 0.6 mg/mL or the 30 mg dose of biosorbent removed 80.26% for 5 ppm, 79.32% for 15 ppm, and 59.87% for 30 ppm. Biosorption isothermal data could be well interpreted by the Langmuir model with a maximum adsorption capacity of 53.476 mg/g of lead ion on B. nigra stem and roots biomass. The kinetic experimental data was properly correlated with the second-order kinetic model (R2 = 0.9997). Thus, the best desorbing agent was HNO3 (0.1N) for Pb (II) desorption. Conclusion: Our study showed that the herb B. nigra, without any chemical treatment, can be used to remove heavy metals such as Pb (II) from water and aqueous solution.


2019 ◽  
Vol 11 (1) ◽  
pp. 17-25
Author(s):  
Babatope Abimbola Olufemi ◽  
Anne Nlerum

The parametric statistical adsorption of chemically unmodified coconut shell powder (CSP) to adsorb iron (II) ions from aqueous solutions was examined in this work. It was observed that the adsorption capacity increased with increasing adsorbent dose, reducing adsorbate dose, increasing contact time, decreasing temperature and reducing particle size. As observed about one gram of the adsorbent was sufficient enough to remove 98 % iron (II) ions. A total contact time of about 40 minutes was sufficient for almost complete adsorption of the ions, while a pH of about 6.0 exhibited the maximum adsorption capacity. The sorption data were fitted into Langmuir, Freundlich, Temkin and the Dubinin-Radushkevich isotherms, fitted most with the Freundlich Isotherm model. The energy values obtained from the Temkin and Dubinin-Radushkevich isotherm model indicated high chemisorption phenomenon with the adsorbents. Investigation of some kinetic models confirmed that the adsorption of iron (II) ions using CSP was a pseudo-second order kinetic process, which further corroborates that chemisorption dominates the adsorption. Fourier Transform Analysis (FTIR) further established and justified the outcome of the study. The adsorption was parametrically justified statistically with Analysis of Variance (ANOVA) and Bonferroni-Holm Posthoc significance test. Conclusively, coconut shell proved strongly to be an effective and suitable adsorbent for removing iron (II) ions from aqueous solutions.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6100-6120
Author(s):  
Yinan Hao ◽  
Yanfei Pan ◽  
Qingwei Du ◽  
Xudong Li ◽  
Ximing Wang

Armeniaca sibirica shell activated carbon (ASSAC) magnetized by nanoparticle Fe3O4 prepared from Armeniaca sibirica shell was investigated to determine its adsorption for Hg2+ from wastewater. Fe3O4/ASSAC was characterized using XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), and BET (Brunauer–Emmett–Teller). Optimum adsorption parameters were determined based on the initial concentration of Hg2+, reaction time, reaction temperature, and pH value in adsorption studies. The experiment results demonstrated that the specific surface area of ASSAC decreased after magnetization; however the adsorption capacity and removal rate of Hg2+ increased 0.656 mg/g and 0.630%, respectively. When the initial concentration of Hg2+ solution was 250 mg/L and the pH value was 2, the adsorption time was 180 min and the temperature was 30 °C, and with the Fe3O4/ASSAC at 0.05 g, the adsorption reaching 97.1 mg/g, and the removal efficiency was 99.6%. The adsorption capacity of Fe3O4/ASSAC to Hg2+ was in accord with Freundlich isotherm models, and a pseudo-second-order kinetic equation was used to fit the adsorption best. The Gibbs free energy ΔGo < 0,enthalpy change ΔHo < 0, and entropy change ΔSo < 0 which manifested the adsorption was a spontaneous and exothermic process.


2020 ◽  
Vol 10 (5) ◽  
pp. 1738
Author(s):  
Kay Thwe Aung ◽  
Seung-Hee Hong ◽  
Seong-Jik Park ◽  
Chang-Gu Lee

Polyacrylonitrile (PAN) fibers were prepared via electrospinning and were modified with diethylenetriamine (DETA) to fabricate surface-modified PAN fibers. The surface-modified PAN fibers were used to evaluate their adsorption capacity for the removal of Cu(II) from aqueous solutions. Batch adsorption experiments were performed to examine the effects of the modification process, initial concentration, initial pH, and adsorbent dose on the adsorption of Cu(II). Kinetic analysis revealed that the experimental data fitted the pseudo-second-order kinetic model better than the pseudo-first-order model. Adsorption equilibrium studies were conducted using the Freundlich and Langmuir isotherm models, and the findings indicated that the PAN fibers modified with 85% DETA presented the highest adsorption capacity for Cu(II) of all analyzed samples. Moreover, the results revealed that the Freundlich model was more appropriate than the Langmuir one for describing the adsorption of Cu(II) onto the modified fibers at various initial Cu(II) concentrations. The maximum adsorption capacity was determined to be 87.77 mg/g at pH 4, and the percent removal of Cu(II) increased as the amount of adsorbent increased. Furthermore, the surface-modified PAN fibers could be easily regenerated using NaOH solution. Therefore, surface-modified PAN fibers could be used as adsorbents for the removal of Cu(II) from aqueous solutions.


1994 ◽  
Vol 30 (9) ◽  
pp. 191-197 ◽  
Author(s):  
R. Leyva Ramos ◽  
A. Juarez Martinez ◽  
R. M. Guerrero Coronado

The adsorption isotherm of chromium (VI) on activated carbon was obtained in a batch adsorber. The experimental adsorption data were fitted reasonably well to the Freundlich isotherm. The effect of pH on the adsorption isotherm was investigated at pH values of 4, 6, 7, 8, 10 and 12. It was found that at pH &lt; 6, Cr(VI) was adsorbed and reduced to Cr(III) by the catalytic action of the carbon and that at pH ≥ 12, Cr(VI) was not adsorbed on activated carbon. Maximum adsorption capacity was observed at pH 6 and the adsorption capacity was diminished about 17 times by increasing the pH from 6 to 10. The pH effect was attributed to the different complexes that Cr(VI) can form in aqueous solution. The adsorption isotherm was also affected by the temperature since the adsorption capacity was increased by raising the temperature from 25 to 40°C. It was concluded that Cr(VI) was adsorbed significantly on activated carbon at pH 6 and that the adsorption capacity was greatly dependent upon pH.


2020 ◽  
Vol 38 (7-8) ◽  
pp. 254-270
Author(s):  
Yuanrong Zhu ◽  
Xianming Yue ◽  
Fazhi Xie

Reducing input of phosphorus is the key step for control of eutrophication and algal blooming in freshwater lakes. Adsorption technology is a cost-effective technology for phosphate removal in water for the purpose. Thus, in this study, a novel Fe–Mn–La tri-metal composite sorbent was developed, and then evaluated for phosphate removal. The results showed that the maximum adsorption capacity could be approached to 61.80 mg g−1 at 25°C under pH of 6.03. Adsorption of phosphate by Fe–Mn–La tri-metal composite adsorbent fitted better by pseudo-second-order kinetic equation and Langmuir model, which suggested that the adsorption process was surface chemical reactions and mainly in a monolayer coverage manner. The thermodynamic study indicated that the adsorption reaction was an endothermic process. The phosphate removal gradually decreased with the increasing of pH from 3.02 to 11.00. The sequence of coexisting anions competing with phosphates was that CO32− > Cl− > SO42− > NO3−. Dissolved organic matter, fulvic acid as a representative, would also decrease adsorption capacities of phosphate by Fe–Mn–La tri-metal composite adsorbents. Adsorption capacity would be decreased with increasing addition of adsorbents, while removal efficiency would be increased in this process. The Fe–Mn–La tri-metal composite adsorbent showed a good reusability when applied to removal of dissolved phosphate from aqueous solutions. The Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy analyses indicated that some hydroxyl groups (–OH) on the surface of adsorbent were replaced by the adsorbed PO43−, HPO42−, or H2PO4−. Aggregative results showed that the novel Fe–Mn–La tri-mental composite sorbent is a very promising adsorbent for the removal of phosphate from aqueous solutions.


2011 ◽  
Vol 8 (s1) ◽  
pp. S363-S371 ◽  
Author(s):  
C. Theivarasu ◽  
S. Mylsamy

The removal of malachite green (MG) by cocoa (Theobroma cacao) shell activated carbon (CSAC) was investigated in present study. Adsorption studies were performed by batch experiments as a function of process parameters such as initial pH, contact time, initial concentration and adsorbent dose. A comparison of kinetic models applied to the adsorption of MG on CSAC was evaluated for the pseudo-first order and pseudo-second order kinetic models. Results showed that the pseudo-second order kinetic model was found to correlate the experimental data well. The experimental equilibrium adsorption data was represented with Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and Flory-Huggins isotherms. The experimental data obtained in the present study indicated that activated carbon developed from cocoa shell can be attractive options for dye removal from waste water.


Sign in / Sign up

Export Citation Format

Share Document