scholarly journals Evaluation on the Mechanical Performance of Low-Quality Recycled Aggregate Through Interface Enhancement Between Cement Matrix and Coarse Aggregate by Surface Modification Technology

2016 ◽  
Vol 10 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Heesup Choi ◽  
Hyeonggil Choi ◽  
Myungkwan Lim ◽  
Masumi Inoue ◽  
Ryoma Kitagaki ◽  
...  
Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 166
Author(s):  
Piotr Brzozowski ◽  
Jarosław Strzałkowski ◽  
Piotr Rychtowski ◽  
Rafał Wróbel ◽  
Beata Tryba ◽  
...  

The aim of the research was to determine how the admixture of nanosilica affects the structure and mechanical performance of cement concrete exposed to high temperatures (200, 400, 600, and 800 °C). The structural tests were carried out on the cement paste and concrete using the methods of thermogravimetric analysis, mercury porosimetry, and scanning electron microscopy. The results show that despite the growth of the cement matrix’s total porosity with an increasing amount of nanosilica, the resistance to high temperature improves. Such behavior is the result of not only the thermal characteristics of nanosilica itself but also of the porosity structure in the cement matrix and using the effective method of dispersing the nanostructures in concrete. The nanosilica densifies the structure of the concrete, limiting the number of the pores with diameters from 0.3 to 300 μm, which leads to limitation of the microcracks, particularly in the coarse aggregate-cement matrix contact zone. This phenomenon, in turn, diminishes the cracking of the specimens containing nanosilica at high temperatures and improves the mechanical strength.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2186
Author(s):  
Pericles Savva ◽  
Socrates Ioannou ◽  
Konstantina Oikonomopoulou ◽  
Demetris Nicolaides ◽  
Michael Frixos Petrou

Recycle concrete aggregates (RCA) consist of natural aggregates and remnant mortar adhered to their surface. The amount, size, and morphology of the adherent remainder paste influences quality aspects of RCA, such as their bonding potential with new cement matrix in an RCA-based concrete, as well as the concrete’s overall rheological and performance characteristics. The objective of this research was to study the effect of reducing the adhered mortar in RCA, by means of a mechanical treatment method, on the performance of concrete containing RCA at different percentages. The treatment process was conducted within a concrete mixer truck drum at specific time intervals, the effect of which was determined by means of image analysis, mass loss recordings, and circularity determinations. The effect of size of treated and field RCA, as well as replacement percentages on mechanical performance and durability of high and normal strength concrete mixes, were also investigated. It was concluded that the optimal treatment duration where no further significant removal of adhered paste occurred thereon was 3 h, and concrete mixes containing 3 h treated RCA exhibited comparable performance characteristics to those of the reference concrete mix.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


2012 ◽  
Vol 174-177 ◽  
pp. 751-756
Author(s):  
Zi Fang Xu ◽  
Ming Xu Zhang ◽  
Jin Hua Li

In order to notably improve the mechanical properties and durability of low-grade cement-based material, superfine silica fume was used to modify the cement-based composite based on special perfomance and effects of nano powder. The mechanical performance and durability were investigated.Then the phase compositions,microstructure and morphologies of as-received cement-based composite were studied by X-ray Diffractometer、TGA-DTA and SEM. The results show that: the best formula of raw materials is 1:1:0.025:0.015, and hydration can be accelerated and increasing of hydration products is observed after modification. In the hardened cement matrix, microstructure is very compacted and C-S-H gel forms densed structure, so the structure defect is notably reduced. This means that both strength and durability of cement-based composite are notably improved by the addition of superfine silica fume.


2011 ◽  
Vol 477 ◽  
pp. 280-289 ◽  
Author(s):  
Shao Wei Yao ◽  
Zhen Guo Gao ◽  
Chang Rui Wang

The properties of recycled coarse aggregate and the slump, the physical and mechanical properties and durability of recycled aggregate concrete were studied through tests. The results indicate that the slump, compressive strength and durability of concrete with recycled aggregate are lower than that of concrete with natural aggregate when recycled coarse aggregate fully absorbs water. However, the slump can be similar to that of concrete with natural aggregate. The properties of recycled aggregate concrete can be improved by strengthening the recycled coarse aggregate, and it is also found that the recycled coarse aggregate strengthened by grinding is superior to that soaked by chemical solution.


2008 ◽  
Vol 385-387 ◽  
pp. 381-384 ◽  
Author(s):  
Wei Wang ◽  
Hua Ling ◽  
Xiao Ni Wang ◽  
Tian Xia ◽  
Da Zhi Wang ◽  
...  

With the increase in the use of recycled aggregate concrete (RAC), it is necessary to clearly understand its behavior and characteristics. In this paper, experimental study on compressive strength of RAC with same water/cement ratio is conducted. Firstly, influence of recycled coarse aggregate contents on cube compressive strength of RAC is studied. Secondly, experiment on time-dependent strength developing process of RAC is conducted with different solidification ages. Finally, based on above experimental investigations, empirical formula for compress strengths of RAC with different ages is presented. The result of this paper is helpful to theoretical analysis and practical engineering design of RAC structures.


2014 ◽  
Vol 605 ◽  
pp. 147-150
Author(s):  
Seong Uk Hong ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

This study used the ultrasonic pulse velocity method, one of the non-destructive test methods that does not damage the building for maintenance of to-be-constructed concrete structures using recycled aggregates in order to estimate the compressive strength of high strength concrete structure using recycled coarse aggregate and provide elementary resources for technological establishment of ultrasonic pulse velocity method. 200 test pieces of high strength concrete 40, 50MPa using recycled coarse aggregate were manufactured by replacement rates (0, 30, 50, 100%) and age (1, 7, 28, 180days), and air curing was executed to measure compressive strength and wave velocity. As the result of compressive strength measurement, the one with age of 180day and design strength of 40MPa was 43.69MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 42.82, 41.22, 37.35MPa, and 50MPa was 52.50MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 49.02, 46.66, 45.30MPa, and while it could be seen that the test piece substituted with recycled aggregate was found to have lower strength than the test piece with natural aggregate only, but it still reached the design strength to a degree. The correlation of compressive strength and ultrasonic pulse velocity was found and regression analysis was conducted. The estimation formula for compressive strength of high strength concrete using recycled coarse aggregate was found to be Fc=0.069Vp4.05, R2=0.66


Sign in / Sign up

Export Citation Format

Share Document