scholarly journals Machine learning models for prediction of co-occurrence of diabetes and cardiovascular diseases: a retrospective cohort study

Author(s):  
Ahmad Shaker Abdalrada ◽  
Jemal Abawajy ◽  
Tahsien Al-Quraishi ◽  
Sheikh Mohammed Shariful Islam

Abstract Background Diabetic mellitus (DM) and cardiovascular diseases (CVD) cause significant healthcare burden globally and often co-exists. Current approaches often fail to identify many people with co-occurrence of DM and CVD, leading to delay in healthcare seeking, increased complications and morbidity. In this paper, we aimed to develop and evaluate a two-stage machine learning (ML) model to predict the co-occurrence of DM and CVD. Methods We used the diabetes complications screening research initiative (DiScRi) dataset containing >200 variables from >2000 participants. In the first stage, we used two ML models (logistic regression and Evimp functions) implemented in multivariate adaptive regression splines model to infer the significant common risk factors for DM and CVD and applied the correlation matrix to reduce redundancy. In the second stage, we used classification and regression algorithm to develop our model. We evaluated the prediction models using prediction accuracy, sensitivity and specificity as performance metrics. Results Common risk factors for DM and CVD co-occurrence was family history of the diseases, gender, deep breathing heart rate change, lying to standing blood pressure change, HbA1c, HDL and TC\HDL ratio. The predictive model showed that the participants with HbA1c >6.45 and TC\HDL ratio > 5.5 were at risk of developing both diseases (97.9% probability). In contrast, participants with HbA1c >6.45 and TC\HDL ratio ≤ 5.5 were more likely to have only DM (84.5% probability) and those with HbA1c ≤5.45 and HDL >1.45 were likely to be healthy (82.4%. probability). Further, participants with HbA1c ≤5.45 and HDL <1.45 were at risk of only CVD (100% probability). The predictive accuracy of the ML model to detect co-occurrence of DM and CVD is 94.09%, sensitivity 93.5%, and specificity 95.8%. Conclusions Our ML model can significantly predict with high accuracy the co-occurrence of DM and CVD in people attending a screening program. This might help in early detection of patients with DM and CVD who could benefit from preventive treatment and reduce future healthcare burden.

2021 ◽  
Vol 10 (4) ◽  
pp. 199
Author(s):  
Francisco M. Bellas Aláez ◽  
Jesus M. Torres Palenzuela ◽  
Evangelos Spyrakos ◽  
Luis González Vilas

This work presents new prediction models based on recent developments in machine learning methods, such as Random Forest (RF) and AdaBoost, and compares them with more classical approaches, i.e., support vector machines (SVMs) and neural networks (NNs). The models predict Pseudo-nitzschia spp. blooms in the Galician Rias Baixas. This work builds on a previous study by the authors (doi.org/10.1016/j.pocean.2014.03.003) but uses an extended database (from 2002 to 2012) and new algorithms. Our results show that RF and AdaBoost provide better prediction results compared to SVMs and NNs, as they show improved performance metrics and a better balance between sensitivity and specificity. Classical machine learning approaches show higher sensitivities, but at a cost of lower specificity and higher percentages of false alarms (lower precision). These results seem to indicate a greater adaptation of new algorithms (RF and AdaBoost) to unbalanced datasets. Our models could be operationally implemented to establish a short-term prediction system.


Author(s):  
Chenxi Huang ◽  
Shu-Xia Li ◽  
César Caraballo ◽  
Frederick A. Masoudi ◽  
John S. Rumsfeld ◽  
...  

Background: New methods such as machine learning techniques have been increasingly used to enhance the performance of risk predictions for clinical decision-making. However, commonly reported performance metrics may not be sufficient to capture the advantages of these newly proposed models for their adoption by health care professionals to improve care. Machine learning models often improve risk estimation for certain subpopulations that may be missed by these metrics. Methods and Results: This article addresses the limitations of commonly reported metrics for performance comparison and proposes additional metrics. Our discussions cover metrics related to overall performance, discrimination, calibration, resolution, reclassification, and model implementation. Models for predicting acute kidney injury after percutaneous coronary intervention are used to illustrate the use of these metrics. Conclusions: We demonstrate that commonly reported metrics may not have sufficient sensitivity to identify improvement of machine learning models and propose the use of a comprehensive list of performance metrics for reporting and comparing clinical risk prediction models.


Cardiovascular diseases and prostate cancer share common risk factors such as age of presentation, unhealthy eating, obesity and smoking. It is also known that in Chile, cardiovascular and oncological diseases cause 52% of the global mortality in Chile according to 2014 data [1].


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Matthew W Segar ◽  
Byron Jaeger ◽  
Kershaw V Patel ◽  
Vijay Nambi ◽  
Chiadi E Ndumele ◽  
...  

Introduction: Heart failure (HF) risk and the underlying biological risk factors vary by race. Machine learning (ML) may improve race-specific HF risk prediction but this has not been fully evaluated. Methods: The study included participants from 4 cohorts (ARIC, DHS, JHS, and MESA) aged > 40 years, free of baseline HF, and with adjudicated HF event follow-up. Black adults from JHS and white adults from ARIC were used to derive race-specific ML models to predict 10-year HF risk. The ML models were externally validated in subgroups of black and white adults from ARIC (excluding JHS participants) and pooled MESA/DHS cohorts and compared to prior established HF risk scores developed in ARIC and MESA. Harrell’s C-index and Greenwood-Nam-D’Agostino chi-square were used to assess discrimination and calibration, respectively. Results: In the derivation cohorts, 288 of 4141 (7.0%) black and 391 of 8242 (4.7%) white adults developed HF over 10 years. The ML models had excellent discrimination in both black and white participants (C-indices = 0.88 and 0.89). In the external validation cohorts for black participants from ARIC (excluding JHS, N = 1072) and MESA/DHS pooled cohorts (N = 2821), 131 (12.2%) and 115 (4.1%) developed HF. The ML model had adequate calibration and demonstrated superior discrimination compared to established HF risk models (Fig A). A consistent pattern was also observed in the external validation cohorts of white participants from the MESA/DHS pooled cohorts (N=3236; 100 [3.1%] HF events) (Fig A). The most important predictors of HF in both races were NP levels. Cardiac biomarkers and glycemic parameters were most important among blacks while LV hypertrophy and prevalent CVD and traditional CV risk factors were the strongest predictors among whites (Fig B). Conclusions: Race-specific and ML-based HF risk models that integrate clinical, laboratory, and biomarker data demonstrated superior performance when compared to traditional risk prediction models.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Georgios Kantidakis ◽  
Hein Putter ◽  
Carlo Lancia ◽  
Jacob de Boer ◽  
Andries E. Braat ◽  
...  

Abstract Background Predicting survival of recipients after liver transplantation is regarded as one of the most important challenges in contemporary medicine. Hence, improving on current prediction models is of great interest.Nowadays, there is a strong discussion in the medical field about machine learning (ML) and whether it has greater potential than traditional regression models when dealing with complex data. Criticism to ML is related to unsuitable performance measures and lack of interpretability which is important for clinicians. Methods In this paper, ML techniques such as random forests and neural networks are applied to large data of 62294 patients from the United States with 97 predictors selected on clinical/statistical grounds, over more than 600, to predict survival from transplantation. Of particular interest is also the identification of potential risk factors. A comparison is performed between 3 different Cox models (with all variables, backward selection and LASSO) and 3 machine learning techniques: a random survival forest and 2 partial logistic artificial neural networks (PLANNs). For PLANNs, novel extensions to their original specification are tested. Emphasis is given on the advantages and pitfalls of each method and on the interpretability of the ML techniques. Results Well-established predictive measures are employed from the survival field (C-index, Brier score and Integrated Brier Score) and the strongest prognostic factors are identified for each model. Clinical endpoint is overall graft-survival defined as the time between transplantation and the date of graft-failure or death. The random survival forest shows slightly better predictive performance than Cox models based on the C-index. Neural networks show better performance than both Cox models and random survival forest based on the Integrated Brier Score at 10 years. Conclusion In this work, it is shown that machine learning techniques can be a useful tool for both prediction and interpretation in the survival context. From the ML techniques examined here, PLANN with 1 hidden layer predicts survival probabilities the most accurately, being as calibrated as the Cox model with all variables. Trial registration Retrospective data were provided by the Scientific Registry of Transplant Recipients under Data Use Agreement number 9477 for analysis of risk factors after liver transplantation.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2537
Author(s):  
Luis Rolando Guarneros-Nolasco ◽  
Nancy Aracely Cruz-Ramos ◽  
Giner Alor-Hernández ◽  
Lisbeth Rodríguez-Mazahua ◽  
José Luis Sánchez-Cervantes

Cardiovascular Diseases (CVDs) are a leading cause of death globally. In CVDs, the heart is unable to deliver enough blood to other body regions. As an effective and accurate diagnosis of CVDs is essential for CVD prevention and treatment, machine learning (ML) techniques can be effectively and reliably used to discern patients suffering from a CVD from those who do not suffer from any heart condition. Namely, machine learning algorithms (MLAs) play a key role in the diagnosis of CVDs through predictive models that allow us to identify the main risks factors influencing CVD development. In this study, we analyze the performance of ten MLAs on two datasets for CVD prediction and two for CVD diagnosis. Algorithm performance is analyzed on top-two and top-four dataset attributes/features with respect to five performance metrics –accuracy, precision, recall, f1-score, and roc-auc—using the train-test split technique and k-fold cross-validation. Our study identifies the top-two and top-four attributes from CVD datasets analyzing the performance of the accuracy metrics to determine that they are the best for predicting and diagnosing CVD. As our main findings, the ten ML classifiers exhibited appropriate diagnosis in classification and predictive performance with accuracy metric with top-two attributes, identifying three main attributes for diagnosis and prediction of a CVD such as arrhythmia and tachycardia; hence, they can be successfully implemented for improving current CVD diagnosis efforts and help patients around the world, especially in regions where medical staff is lacking.


2019 ◽  
Author(s):  
Yanli Zhang-James ◽  
Qi Chen ◽  
Ralf Kuja-Halkola ◽  
Paul Lichtenstein ◽  
Henrik Larsson ◽  
...  

AbstractBackgroundChildren with attention-deficit/hyperactivity disorder (ADHD) have a high risk for substance use disorders (SUDs). Early identification of at-risk youth would help allocate scarce resources for prevention programs.MethodsPsychiatric and somatic diagnoses, family history of these disorders, measures of socioeconomic distress and information about birth complications were obtained from the national registers in Sweden for 19,787 children with ADHD born between 1989-1993. We trained 1) cross-sectional machine learning models using data available by age 17 to predict SUD diagnosis between ages 18-19; and 2) a longitudinal model to predict new diagnoses at each age.ResultsThe area under the receiver operating characteristic curve (AUC) was 0.73 and 0.71 for the random forest and multilayer perceptron cross-sectional models. A prior diagnosis of SUD was the most important predictor, accounting for 25% of correct predictions. However, after excluding this predictor, our model still significantly predicted the first-time diagnosis of SUD during age 18-19 with an AUC of 0.67. The average of the AUCs from longitudinal models predicting new diagnoses one, two, five and ten years in the future was 0.63.ConclusionsSignificant predictions of at-risk co-morbid SUDs in individuals with ADHD can be achieved using population registry data, even many years prior to the first diagnosis. Longitudinal models can potentially monitor their risks over time. More work is needed to create prediction models based on electronic health records or linked population-registers that are sufficiently accurate for use in the clinic.


Author(s):  
Matthew W. Segar ◽  
Byron C. Jaeger ◽  
Kershaw V. Patel ◽  
Vijay Nambi ◽  
Chiadi E. Ndumele ◽  
...  

Background: Heart failure (HF) risk and the underlying risk factors vary by race. Traditional models for HF risk prediction treat race as a covariate in risk prediction and do not account for significant parameters such as cardiac biomarkers. Machine learning (ML) may offer advantages over traditional modeling techniques to develop race-specific HF risk prediction models and elucidate important contributors of HF development across races. Methods: We performed a retrospective analysis of four large, community cohort studies (ARIC, DHS, JHS, and MESA) with adjudicated HF events. Participants were aged >40 years and free of HF at baseline. Race-specific ML models for HF risk prediction were developed in the JHS cohort (for Black race-specific model) and White adults from ARIC (for White rate-specific model). The models included 39 candidate variables across demographic, anthropometric, medical history, laboratory, and electrocardiographic domains. The ML models were externally validated and compared with prior established traditional and non-race specific ML models in race-specific subgroups of the pooled MESA/DHS cohort and Black participants of ARIC. Harrell's C-index and Greenwood-Nam-D'Agostino chi-square tests were used to assess discrimination and calibration, respectively. Results: The ML models had excellent discrimination in the derivation cohorts for Black (N=4,141 in JHS, C-index=0.88) and White (N=7,858 in ARIC, C-index=0.89) participants. In the external validation cohorts, the race-specific ML model demonstrated adequate calibration and superior discrimination (C-indices=0.80-0.83 [for Black individuals] and 0.82 [for White individuals]) compared with established HF risk models or with non-race specific ML models derived using race as a covariate. Among the risk factors, natriuretic peptide levels were the most important predictor of HF risk across both races, followed by troponin levels in Black and EKG-based Cornell voltage in White individuals. Other key predictors of HF risk among Black individuals were glycemic parameters and socioeconomic factors. In contrast, prevalent cardiovascular (CV) disease and traditional CV risk factors were stronger predictors of HF risk in White adults. Conclusions: Race-specific and ML-based HF risk models that integrate clinical, laboratory, and biomarker data demonstrated superior performance when compared with traditional HF risk and non-race specific ML models. This approach identifies distinct race-specific contributors of HF.


10.2196/32662 ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. e32662
Author(s):  
Imjin Ahn ◽  
Hansle Gwon ◽  
Heejun Kang ◽  
Yunha Kim ◽  
Hyeram Seo ◽  
...  

Background Effective resource management in hospitals can improve the quality of medical services by reducing labor-intensive burdens on staff, decreasing inpatient waiting time, and securing the optimal treatment time. The use of hospital processes requires effective bed management; a stay in the hospital that is longer than the optimal treatment time hinders bed management. Therefore, predicting a patient’s hospitalization period may support the making of judicious decisions regarding bed management. Objective First, this study aims to develop a machine learning (ML)–based predictive model for predicting the discharge probability of inpatients with cardiovascular diseases (CVDs). Second, we aim to assess the outcome of the predictive model and explain the primary risk factors of inpatients for patient-specific care. Finally, we aim to evaluate whether our ML-based predictive model helps manage bed scheduling efficiently and detects long-term inpatients in advance to improve the use of hospital processes and enhance the quality of medical services. Methods We set up the cohort criteria and extracted the data from CardioNet, a manually curated database that specializes in CVDs. We processed the data to create a suitable data set by reindexing the date-index, integrating the present features with past features from the previous 3 years, and imputing missing values. Subsequently, we trained the ML-based predictive models and evaluated them to find an elaborate model. Finally, we predicted the discharge probability within 3 days and explained the outcomes of the model by identifying, quantifying, and visualizing its features. Results We experimented with 5 ML-based models using 5 cross-validations. Extreme gradient boosting, which was selected as the final model, accomplished an average area under the receiver operating characteristic curve score that was 0.865 higher than that of the other models (ie, logistic regression, random forest, support vector machine, and multilayer perceptron). Furthermore, we performed feature reduction, represented the feature importance, and assessed prediction outcomes. One of the outcomes, the individual explainer, provides a discharge score during hospitalization and a daily feature influence score to the medical team and patients. Finally, we visualized simulated bed management to use the outcomes. Conclusions In this study, we propose an individual explainer based on an ML-based predictive model, which provides the discharge probability and relative contributions of individual features. Our model can assist medical teams and patients in identifying individual and common risk factors in CVDs and can support hospital administrators in improving the management of hospital beds and other resources.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Liu ◽  
Jian Zhang ◽  
Haodong Huang ◽  
Yunting Wang ◽  
Zuyue Zhang ◽  
...  

Objective: We explored the risk factors for intravenous immunoglobulin (IVIG) resistance in children with Kawasaki disease (KD) and constructed a prediction model based on machine learning algorithms.Methods: A retrospective study including 1,398 KD patients hospitalized in 7 affiliated hospitals of Chongqing Medical University from January 2015 to August 2020 was conducted. All patients were divided into IVIG-responsive and IVIG-resistant groups, which were randomly divided into training and validation sets. The independent risk factors were determined using logistic regression analysis. Logistic regression nomograms, support vector machine (SVM), XGBoost and LightGBM prediction models were constructed and compared with the previous models.Results: In total, 1,240 out of 1,398 patients were IVIG responders, while 158 were resistant to IVIG. According to the results of logistic regression analysis of the training set, four independent risk factors were identified, including total bilirubin (TBIL) (OR = 1.115, 95% CI 1.067–1.165), procalcitonin (PCT) (OR = 1.511, 95% CI 1.270–1.798), alanine aminotransferase (ALT) (OR = 1.013, 95% CI 1.008–1.018) and platelet count (PLT) (OR = 0.998, 95% CI 0.996–1). Logistic regression nomogram, SVM, XGBoost, and LightGBM prediction models were constructed based on the above independent risk factors. The sensitivity was 0.617, 0.681, 0.638, and 0.702, the specificity was 0.712, 0.841, 0.967, and 0.903, and the area under curve (AUC) was 0.731, 0.814, 0.804, and 0.874, respectively. Among the prediction models, the LightGBM model displayed the best ability for comprehensive prediction, with an AUC of 0.874, which surpassed the previous classic models of Egami (AUC = 0.581), Kobayashi (AUC = 0.524), Sano (AUC = 0.519), Fu (AUC = 0.578), and Formosa (AUC = 0.575).Conclusion: The machine learning LightGBM prediction model for IVIG-resistant KD patients was superior to previous models. Our findings may help to accomplish early identification of the risk of IVIG resistance and improve their outcomes.


Sign in / Sign up

Export Citation Format

Share Document