scholarly journals Integrated use of chemical and geophysical monitoring to study the diesel oil biodegradation in microcosms with different operative conditions

Author(s):  
Carla Maria Raffa ◽  
Andrea Vergnano ◽  
Fulvia Chiampo ◽  
Alberto Godio

AbstractThis study aimed to monitor the aerobic bioremediation of diesel oil-contaminated soil by measuring: a) the CO2 production; 2) the fluorescein production; 3) the residual diesel oil concentration. Moreover, the complex dielectric permittivity was monitored through an open-ended coaxial cable. Several microcosms were prepared, changing the water content (u% = 8–15% by weight), the carbon to nitrogen ratio (C/N = 20–450), and the soil amount (200 and 800 g of dry soil). The cumulative CO2 and fluorescein production showed similar trends, but different values since these two parameters reflect different features of the biological process occurring within each microcosm. The diesel oil removal efficiency depended on the microcosm characteristics. After 84 days, in the microcosms with 200 g of dry soil, the highest removal efficiency was achieved with a water content of 8% by weight and C/N = 120, while in the microcosms with 800 g of dry soil the best result was achieved with the water content equal to 12% by weight and C/N = 100. In the tested soil, the bioremediation process is efficient if the water content is in the range 8–12% by weight, and C/N is in the range 100–180; under these operative conditions, the diesel oil removal efficiency was about 65–70% after 84 days. The dielectric permittivity was monitored in microcosms with 200 g of dry soil. The open-ended coaxial cable detected significant variations of both the real and the imaginary component of the dielectric permittivity during the bioremediation process, due to the physical and chemical changes that occurred within the microcosms.

2020 ◽  
Vol 10 (1) ◽  
pp. 405 ◽  
Author(s):  
Carla Maria Raffa ◽  
Fulvia Chiampo ◽  
Alberto Godio ◽  
Andrea Vergnano ◽  
Francesca Bosco ◽  
...  

This study aimed to investigate the kinetics of an aerobic bioremediation process of diesel oil removal by indigenous microorganisms, and to define the optimal operative conditions by means of response surface methodology. This was carried out by setting up a series of microcosms (200 g of soil), polluted with the same diesel oil concentration (70 g·kg−1 of soil), but with different water contents (u%) and carbon to nitrogen (C/N) ratios. The process was monitored by: (1) residual diesel oil concentration, to measure the removal efficiency, and (2) fluorescein production, to check the microbial activity. These two parameters were the objective variables used for the analysis of variance (ANOVA) and response surface methodology (RSM). The results allowed the interactions between u% and C/N to be defined and the optimal range to be adopted for each. The process kinetics was modeled with first- and second-order reaction rates; slightly better results were achieved for the second-order model in terms of parameter variability. Biological processes like degradation may have effects on dielectric properties of soil; an open-ended coaxial cable was used to measure the dielectric permittivity of microcosm matrices at the start and after 130 days of bioremediation. The evolution of the real and the imaginary components of dielectric permittivity provided results that supported the evidence of a biodegradation process in progress.


2020 ◽  
Author(s):  
Bruno Martins Nkem ◽  
Normala Halimoon ◽  
Fatimah Md Yus ◽  
Wan Lutfi Wan Johari

Abstract Consortium of bacteria capable of degrading oily hydrocarbons were isolated from tarball on beaches in Terengganu, Malaysia and classified as Pseudomonas stutzeri, Cellulosimicrobium cellulans, Acinetobacter baumannii and Pseudomonas balearica. Taguchi design was used to optimize diesel-oil biodegradation using these bacteria as consortium. Maximum diesel-oil biodegradation by experimental runs was 93.6% with individual n-alkanes degraded between 87.6% – 97.6% in 30 days. Optimal settings were 2.5 mL (1.248 OD600nm) inoculum size; 12% (v/v) initial diesel-oil in minimal salt media with 7.0 pH, 30.0 gL-1 NaCl and 2.0 gL-1 NH4NO3 concentration, incubated at 42oC temperature and 150 rpm agitation speed. Parameters significantly improved diesel-oil removal by consortium as indicated by model determination coefficient (R2 = 90.89%; P < 0.001) with synergistic effect of agitation speed significantly contributing 81.03%. Taguchi design established optimal settings of investigated parameters that produced significant improvement on diesel-oil removal by consortium. This can be used to design novel bioremediation strategy that can achieve optimal decontamination of oil pollution in shorter time.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1661 ◽  
Author(s):  
Francesca Bosco ◽  
Annalisa Casale ◽  
Fulvia Chiampo ◽  
Alberto Godio

Bioremediation of soils polluted with diesel oil is one of the methods already applied on a large scale. However, several questions remain open surrounding the operative conditions and biological strategies to be adopted to optimize the removal efficiency. This study aimed to investigate the environmental factors that influence geophysical properties in soil polluted with diesel oils, in particular, during the biodegradation of this contaminant by an indigenous microbial population. With this aim, aerobic degradation was performed in soil column microcosms with a high concentration of diesel oil (75 g kg−1 of soil); the dielectric permittivity and electrical conductivity were measured. In one of the microcosms, the addition of glucose was also tested. Biostimulation was performed with a Mineral Salt Medium for Bacteria. The sensitivity of the dielectric permittivity versus temperature was analyzed. A theoretical approach was adopted to estimate the changes in the bulk dielectric permittivity of a mixture of sandy soil-water-oil-gas, according to the variations in the oil content. The sensitivity of the dielectric permittivity to the temperature effects was analyzed. The results show that (1) biostimulation can give good removal efficiency; (2) the addition of glucose as a primary carbon source does not improve the diesel oil removal; (3) a limited amount of diesel oil was removed by adsorption and volatilization effects; and (4) the diesel oil efficiency removal was in the order of 70% after 200 days, with different removal percentages for oil components; the best results were obtained for molecules with a low retention time. This study is preparatory to the adoption of geophysical methods to monitor the biological process on a larger scale. Altogether, these results will be useful to apply the process on a larger scale, where geophysical methods will be adopted for monitoring.


1999 ◽  
Vol 34 (7) ◽  
pp. 1151-1157
Author(s):  
Adaucto Bellarmino de Pereira-Netto ◽  
Antonio Celso Novaes de Magalhães ◽  
Hilton Silveira Pinto

Tropical kudzu (Pueraria phaseoloides (Roxb.) Benth., Leguminosae: Faboideae) is native to the humid Southeastern Asia. Tropical kudzu has potential as a cover crop in regions subjected to dryness. The objective of this paper was to evaluate the effect of soil water depletion on leaflet relative water content (RWC), stomatal conductance (g) and temperature (T L) in tropical kudzu. RWC of waterstressed plants dropped from 96 to 78%, following a reduction in SWC from 0.25 to 0.17 g (H2O).g (dry soil)-1.Stomatal conductance of stressed plants decreased from 221 to 98 mmol.m-2.s-1, following the reduction in soil water content (SWC). The day after re-irrigation, g of water stressed plants was 15% lower than g of unstressed plants. Differences in T L between waterstressed and unstressed plants (deltaT L) rose linearly from 0.1 to 2.2ºC following progressive water deficit. RWC and T L of waterstressed plants paralled RWC and T L of unstressed plants the day after reirrigation. The strong decrease in SWC found in this study only induced moderate water stress in tropical kudzu. In addition, tropical kudzu recover rapidly from the induced water stress after the re-irrigation.


1991 ◽  
Vol 31 (6) ◽  
pp. 843 ◽  
Author(s):  
IJ Porter ◽  
PR Merriman ◽  
PJ Keane

The effect of solarisation combined with low rates of soil fumigants on the severity of clubroot and yield of cauliflowers was determined at 2 locations in southern Victoria. The effectiveness of treatments was shown to be dependent on location; on the type, water content and temperature of soil; and on the population density of Plasmodiophora brassicae. Yields were reduced depending upon the disease severity, usually within 60 days after transplanting. Propagules of P. brassicae could survive for more than 28 days in ovens at 45�C when in dry soil but died within 14 days at 40�C in moist soil. At Werribee in 1985 on a red brown earth, solarisation combined with dazomet (100 kg dazomet/ha) gave significantly better control than either treatment alone. This treatment reduced P. brassicae in the 0-10 cm layer, reduced the disease rating from 2.7 to 0.9 (0-3), and increased yield from 2.4 to 47 t/ha compared with controls. In 1986, solarisation combined with 98% methyl bromide-2% chloropicrin (100 and 250 kg/ha) reduced the population density of P. brassicae in the 0-10 and 10-20 cm layers of soil, reduced the disease rating from 3 to 1.8, and increased yield from 0 to 22 t/ha. These treatments were more effective than solarisation and dazomet used alone or in combination. At Keysborough in 1985 on a grey sand, separate treatments of solarisation or dazomet (100 and 250 kg dazometha) were as effective as combined treatments and significantly reduced disease and increased yields compared to controls. Solarisation combined with either fumigant significantly reduced the distribution and total number of weeds at all sites and was generally more effective than separate treatments.


Author(s):  
Nur Syahirah Amirah Mohd Jopery ◽  
Mohammad Abdullah ◽  
Soo Kum Yoke ◽  
Ahmad Rozaimee Mustaffa

While the discovery of oil contributes a lot towards a country’s economy and technological development, it is also the cause for oil pollution. As such, this study proposes to use lemon peel waste as a low-cost adsorbent to manage oil pollution. For the untreated adsorbent, the lemon peels were cut into small pieces and dried under sunlight for 48 hours. Then, it was further dried in an oven for 24 hours and ground into powder. For the treated adsorbent, the lemon peels were soaked in 0.5 M of sodium hydroxide (NaOH) solution. The adsorbent was used to adsorb different types of oil (diesel oil, lubricant oil, waste vegetable oil) and in different types of water (ocean water, lake water, tap water) with different amounts of adsorbent which is 0.2 g, 0.4 g, 0.6 g, 0.8 g, and 1.0 g for adsorbent dosage experiment. While for types of water experiment, a ratio for volume of water and oil of 3:1, and constant mass adsorbent was used. The result showed that untreated adsorbent can adsorb higher amount of oils than treated adsorbent. The oil that could be easily adsorbed using lemon peels adsorbent is diesel oil with 89.91% adsorption. For the types of water, the result changes according to different types of water and oil used. It was found that the higher the mass adsorbent, the lower the percentage of oil removal. The highest percentage of diesel oil removed in ocean water is 81.68%. While the removal of lubricant oil and waste vegetable oil in lake water is 66.6% and 72.13%, respectively. Scanning Electron Microscopy (SEM) shows that treated lemon peels had small pores compared to untreated lemon peel waste. This study demonstrated and proposed that the lemon peel waste has a good potential in low-cost oil waste removal.


2015 ◽  
Vol 104 ◽  
pp. 129-135 ◽  
Author(s):  
Ewa Kaczorek ◽  
Wojciech Smułek ◽  
Agnieszka Zgoła-Grześkowiak ◽  
Katarzyna Bielicka-Daszkiewicz ◽  
Andrzej Olszanowski

2012 ◽  
Vol 24 (3) ◽  
pp. 387-397 ◽  
Author(s):  
Wannarak Nopcharoenkul ◽  
Parichat Netsakulnee ◽  
Onruthai Pinyakong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document