scholarly journals The preliminary study of oil removal using lemon peel waste

Author(s):  
Nur Syahirah Amirah Mohd Jopery ◽  
Mohammad Abdullah ◽  
Soo Kum Yoke ◽  
Ahmad Rozaimee Mustaffa

While the discovery of oil contributes a lot towards a country’s economy and technological development, it is also the cause for oil pollution. As such, this study proposes to use lemon peel waste as a low-cost adsorbent to manage oil pollution. For the untreated adsorbent, the lemon peels were cut into small pieces and dried under sunlight for 48 hours. Then, it was further dried in an oven for 24 hours and ground into powder. For the treated adsorbent, the lemon peels were soaked in 0.5 M of sodium hydroxide (NaOH) solution. The adsorbent was used to adsorb different types of oil (diesel oil, lubricant oil, waste vegetable oil) and in different types of water (ocean water, lake water, tap water) with different amounts of adsorbent which is 0.2 g, 0.4 g, 0.6 g, 0.8 g, and 1.0 g for adsorbent dosage experiment. While for types of water experiment, a ratio for volume of water and oil of 3:1, and constant mass adsorbent was used. The result showed that untreated adsorbent can adsorb higher amount of oils than treated adsorbent. The oil that could be easily adsorbed using lemon peels adsorbent is diesel oil with 89.91% adsorption. For the types of water, the result changes according to different types of water and oil used. It was found that the higher the mass adsorbent, the lower the percentage of oil removal. The highest percentage of diesel oil removed in ocean water is 81.68%. While the removal of lubricant oil and waste vegetable oil in lake water is 66.6% and 72.13%, respectively. Scanning Electron Microscopy (SEM) shows that treated lemon peels had small pores compared to untreated lemon peel waste. This study demonstrated and proposed that the lemon peel waste has a good potential in low-cost oil waste removal.

2013 ◽  
Vol 726-731 ◽  
pp. 495-498
Author(s):  
Li Na Zheng ◽  
Ge Tian ◽  
Hai Feng Wei ◽  
Heng Ming Liu

Iodometric determination of dissolved oxygen is used as experimental methods, through the determination of oxygen consumption of crude oil, gasoline , diesel , three different types of oil, oxygen consumption of Philippines clams and oxygen consumption of Philippines clams under the conditions of three oil pollution, variations of DO under the conditions of three oil pollution is researched. The results show that oxygen consumption of gasoline> oxygen consumption of diesel oil> oxygen consumption of crude oil. At the same time, oxygen consumption of gasoline changes with time by a big margin, diesel oil comes second, oxygen consumption of crude oil changed slightly with time.


2021 ◽  
pp. 088391152199784
Author(s):  
Nipun Jain ◽  
Shashi Singh

Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 467
Author(s):  
Emília Mendes da Silva Santos ◽  
Isabela Regina Alvares da Silva Lira ◽  
Hugo Moraes Meira ◽  
Jaciana dos Santos Aguiar ◽  
Raquel Diniz Rufino ◽  
...  

In this study, a new formulation of low-cost, biodegradable, and non-toxic biosurfactant by Candida sphaerica UCP 0995 was investigated. The study was conducted in a bioreactor on an industrial waste-based medium, and a central composite rotatable design was used for optimization. The best results, namely a 25.22 mN/m reduction in surface tension, a biosurfactant yield of 10.0 g/L, and a critical micelle concentration of 0.2 g/L, were achieved in 132 h at an agitation speed of 175 rpm and an aeration rate of 1.5 vvm. Compositional and spectroscopic analyses of the purified biosurfactant by chemical methods, Fourier transform infrared spectroscopy, and nuclear magnetic resonance suggested that it is a glycolipid-type biosurfactant, and it showed no cytotoxicity in the MTT assay. The biosurfactant, submitted to different formulation methods as a commercial additive, remained stable for 120 days at room temperature. Tensioactive properties and stability were evaluated at different pH values, temperatures, and salt concentrations. The biosurfactant obtained with all formulation methods demonstrated good stability, with tolerance to wide ranges of pH, temperature and salinity, enabling application under extreme environmental conditions. Bioremediation tests were performed to check the efficacy of the isolated biosurfactant and the selected microbial species in removing oil from soil. The results demonstrated that the biosurfactant produced has promising properties as an agent for the bioremediation of contaminated soil.


Two medium-scale ecosystems (mesocosms) were built on the Oslofjord: one a hard-bottom intertidal system and the other a subtidal soft-sediment system. The hard-bottom mesocosm consists of four basins, two controls and two which were dosed with diesel-oil (129 μg 1 -1 a high oil (HO) dose and 29 μg 1 -1 a low oil (LO) dose). Both oil doses caused high mortality of Mytilus edulis and growth was reduced in the macroalgae Ascophyllum nodosum and Laminaria digitata . Recruitment of Littorina littorea was also affected by oil so that populations declined over time. Subtidal benthic communities have been established in the mesocosm and show variations in sediment chemistry within the range found in the field. Although recruitment of benthic macrofauna is reduced, dominant species and species structure remain closely similar to that in the field over six months. Bioturbation effects studied in the mesocosm have shown the important influence of large, rare species in structuring benthic communities, a finding which would not be possible in nature by diving or by the use ofsubmersibles. Preliminary results from a community taken from 200 m depth and established in the mesocosm suggest that it is now possible to do detailed manipulation experiments on communities simulating the whole continental shelf.


2020 ◽  
Vol 19 (1) ◽  
pp. 105-112
Author(s):  
Ausra Mazeikiene ◽  
Zineb Chaouki ◽  
Hicham Zaitan ◽  
Mostapha Nawdali ◽  
Saulius Vasarevicius

2013 ◽  
Vol 756-759 ◽  
pp. 489-492
Author(s):  
Fu Lu Jin ◽  
Yun Peng Li ◽  
Hong Rui Wang

To automatic test the function and performance of an airborne radar, changeable test adapter is adopted to implement the hardware and software design of the automatic test set of the antenna, transceiver and indicator of the radar based on AT89C52. Problems such as t the different types of interfaces, the various kinds of signals and the test of microwave signal are solved successfully and the objectives of resource sharing and automatic test are realized. The test software is designed by modular structure, and with the help of automatic test set hardware, the required test items of the radar system are experimented and the test process control succeeded. Experiment results show that the automatic test set performs steadily and the results meet the requirements of the airborne radar. The set has the advantages of intelligent, manageable and reducing artificial errors. It provides effective guarantees for radars maintenance, fault diagnosis and fault detection, and has a wide application prospect with low cost.


2016 ◽  
Vol 33 (3) ◽  
pp. 167-171 ◽  
Author(s):  
Kazimierz Drabczyk ◽  
Edyta Wróbel ◽  
Grazyna Kulesza-Matlak ◽  
Wojciech Filipowski ◽  
Krzysztof Waczynski ◽  
...  

Purpose The purpose of this study is comparison of the diffusion processes performed using the commercial available dopant paste made by Filmtronics and the original prepared liquid dopant solution. To decrease prices of industrially produced silicon-based solar cells, the new low-cost production processes are necessary. The main components of most popular silicon solar cells are with diffused emitter layer, passivation, anti-reflective layers and metal electrodes. This type of cells is prepared usually using phosphorus oxychloride diffusion source and metal pastes for screen printing. The diffusion process in diffusion furnace with quartz tube is slow, complicated and requires expensive equipment. The alternative for this technology is very fast in-line processing using the belt furnaces as an equipment. This approach requires different dopant sources. Design/methodology/approach In this work, the diffusion processes were made for two different types of dopant sources. The first one was the commercial available dopant paste from Filmtronics and the second one was the original prepared liquid dopant solution. The investigation was focused on dopant sources fabrication and diffusion processes. The doping solution was made in two stages. In the first stage, a base solution (without dopants) was made: dropwise deionized (DI) water and ethyl alcohol were added to a solution consisting of tetraethoxysilane (TEOS) and 99.8 per cent ethyl alcohol. Next, to the base solution, orthophosphoric acid dissolved in ethyl alcohol was added. Findings Diffused emitter layers with sheet resistance around 60 Ω/sq were produced on solar grade monocrystalline silicon wafers using two types of dopant sources. Originality/value In this work, the diffusion processes were made for two different types of dopant sources. The first one was the commercial available dopant paste from Filmtronics and the second one was the original prepared liquid dopant solution.


1994 ◽  
Vol 348 ◽  
Author(s):  
I. Dafinei ◽  
E. Auffray ◽  
P. Lecoq ◽  
M. Schneegans

ABSTRACTIn the quest for low cost scintillators to equip the very large electromagnetic calorimeters for future High Energy Physics experiments, scintillating glasses can offer an attractive alternative to crystals. The expected production price is indeed supposed to be reduced as compared to crystals, especially for very large volumes. An intense R&D effort has been made by the Crystal Clear collaboration to develop heavy scintillating fluoride glasses in close collaboration with the industry. Results will be shown on the fluorescence and scintillation properties as well as on the radiation resistance of different types of fluoride glasses. Ideas about possible improvement of present performances will also be given.


2014 ◽  
Vol 12 ◽  
pp. 61-66 ◽  
Author(s):  
Pavol Kajánek

Inertial navigation system (INS) is a self-contained navigation technique. Its main purpose is to determinate the position and the trajectory of the object´s movement in space. This technique is well represented not only as a supplementary method (GPS/INS integrated system) but as an autonomous system for navigation of vehicles and pedestrians, also. The aim of this paper is to design a test for low-cost inertial measurement units. The test results give us information about accuracy, which determine the possible use in indoor navigation or other applications. There are described some methods for processing the data obtained by inertial measurement units, which remove noise and improve accuracy of position and orientation.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6684
Author(s):  
Miltiadis Zamparas ◽  
Grigorios L. Kyriakopoulos ◽  
Marios Drosos ◽  
Vasilis C. Kapsalis

The research objective of the study is the estimation of a novel low-cost composite material f-MB (Fe-modified bentonite) as a P and N adsorbent from wastewaters. Τhe present study aimed at examining the phosphate and ammonium removal efficiency from different types of wastewater using f-MB, by conducting bench-scale batch experiments to investigate its equilibrium characteristics and kinetics. The SEM analysis revealed that the platelets of bentonite in f-MB do not form normal bentonite sheets, but they have been restructured in a more compact formation with a great porosity. Regarding the sorption efficiencies (Qm), the maximum phosphate sorption efficiencies (Qm) calculated using the Langmuir model were 24.54, 25.09, 26.13, 24.28, and 23.21 mg/g, respectively, for a pH range of 5 to 9. In addition, the maximum NH4+-N adsorption capacities (Qm) calculated from the Langmuir model were 131.8, 145.7, 168.5, 156.7, and 159.6 mg/g, respectively, for a pH range from 5 to 9. Another important finding of this study is that f-MB can recover P from treated wastewater impacting on resource recovery and circular economy (CE). The modified clay f-MB performed the phosphate and ammonium recovery rates of 80% and 78.5%, respectively. Finally, f-MB can slowly release the largest proportion of phosphate and ammonium ions for a long time, thus extending the application of the f-MB material as a slow-release fertilizer and soil improver.


Sign in / Sign up

Export Citation Format

Share Document