scholarly journals Ampoule method fabricated sulfur vacancy-rich N-doped ZnS electrodes for ammonia production in alkaline media

Author(s):  
Da-Ming Feng ◽  
Ying Sun ◽  
Zhong-Yong Yuan ◽  
Yang Fu ◽  
Baohua Jia ◽  
...  

AbstractThe electrochemical production of green and low-cost ammonia requests the development of high-performance electrocatalysts. In this work, the ampoule method was applied to modulate the surface of the zinc electrode by implanting defects and low-valent active sites. The N-doped ZnS electrocatalyst was thus generated by sulfurization with thiourea and applied for electrocatalytic nitrogen reduction reaction (ENRR). Given the rich sulfur vacancies and abundant Zn-N active sites on the surface, excellent catalytic activity and selectivity were obtained, with an NH3 yield rate of 2.42 × 10–10 mol s−1 cm−2 and a Faradaic efficiency of 7.92% at − 0.6 V vs. RHE in 0.1 M KOH solution. Moreover, the as-synthesized zinc electrode exhibits high stability after five recycling tests and a 24 h potentiostatic test. The comparison with Zn foil, non-doping ZnS/Zn and recent metal sulfide electrocatalysts further demonstrated advanced catalytic performance of N@ZnS/Zn for ENRR. By simple synthesis, S vacancies, and N-doping defects, this promising electrocatalyst would represent a good addition to the arena of transition-metal-based catalysts with superior performance in ENRR. Graphic abstract

2015 ◽  
Vol 3 (6) ◽  
pp. 2978-2984 ◽  
Author(s):  
Xiang-Jun Huang ◽  
Yi-Guo Tang ◽  
Long-Fei Yang ◽  
Ping Chen ◽  
Qing-Sheng Wu ◽  
...  

The CMK3/G-N-Co catalytic system shows excellent catalytic ability in alkaline media for the oxygen reduction reaction and superior stability and tolerance to methanol poisoning effects compared to the Pt/C.


2017 ◽  
Vol 5 (32) ◽  
pp. 16605-16610 ◽  
Author(s):  
Wenhua Zhong ◽  
Jiaxiang Chen ◽  
Peixin Zhang ◽  
Libo Deng ◽  
Lei Yao ◽  
...  

Plasma etching removed less stable carbons and exposed the active sites in Fe–N/C catalysts which resulted in excellent performances towards the oxygen reduction reaction in both acidic and alkaline media.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Ying Sun ◽  
Zizhao Deng ◽  
Xi-Ming Song ◽  
Hui Li ◽  
Zihang Huang ◽  
...  

AbstractElectrocatalytic nitrogen reduction reaction is a carbon-free and energy-saving strategy for efficient synthesis of ammonia under ambient conditions. Here, we report the synthesis of nanosized Bi2O3 particles grown on functionalized exfoliated graphene (Bi2O3/FEG) via a facile electrochemical deposition method. The obtained free-standing Bi2O3/FEG achieves a high Faradaic efficiency of 11.2% and a large NH3 yield of 4.21 ± 0.14 $$ \upmu{\text{g}}_{{{\text{NH}}_{3} }} $$ μ g NH 3  h−1 cm−2 at − 0.5 V versus reversible hydrogen electrode in 0.1 M Na2SO4, better than that in the strong acidic and basic media. Benefiting from its strong interaction of Bi 6p band with the N 2p orbitals, binder-free characteristic, and facile electron transfer, Bi2O3/FEG achieves superior catalytic performance and excellent long-term stability as compared with most of the previous reported catalysts. This study is significant to design low-cost, high-efficient Bi-based electrocatalysts for electrochemical ammonia synthesis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wenyan Du ◽  
Kangqi Shen ◽  
Yuruo Qi ◽  
Wei Gao ◽  
Mengli Tao ◽  
...  

AbstractRechargeable room temperature sodium–sulfur (RT Na–S) batteries are seriously limited by low sulfur utilization and sluggish electrochemical reaction activity of polysulfide intermediates. Herein, a 3D “branch-leaf” biomimetic design proposed for high performance Na–S batteries, where the leaves constructed from Co nanoparticles on carbon nanofibers (CNF) are fully to expose the active sites of Co. The CNF network acts as conductive “branches” to ensure adequate electron and electrolyte supply for the Co leaves. As an effective electrocatalytic battery system, the 3D “branch-leaf” conductive network with abundant active sites and voids can effectively trap polysulfides and provide plentiful electron/ions pathways for electrochemical reaction. DFT calculation reveals that the Co nanoparticles can induce the formation of a unique Co–S–Na molecular layer on the Co surface, which can enable a fast reduction reaction of the polysulfides. Therefore, the prepared “branch-leaf” CNF-L@Co/S electrode exhibits a high initial specific capacity of 1201 mAh g−1 at 0.1 C and superior rate performance.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wenyi Li ◽  
Ke Li ◽  
Yixing Ye ◽  
Shengbo Zhang ◽  
Yanyan Liu ◽  
...  

AbstractThe electrocatalytic nitrogen (N2) reduction reaction (NRR) relies on the development of highly efficient electrocatalysts and electrocatalysis systems. Herein, we report a non-loading electrocatalysis system, where the electrocatalysts are dispersed in aqueous solution rather than loading them on electrode substrates. The system consists of aqueous Ag nanodots (AgNDs) as the catalyst and metallic titanium (Ti) mesh as the current collector for electrocatalytic NRR. The as-synthesized AgNDs, homogeneously dispersed in 0.1 M Na2SO4 solution (pH = 10.5), can achieve an NH3 yield rate of 600.4 ± 23.0 μg h−1 mgAg−1 with a faradaic efficiency (FE) of 10.1 ± 0.7% at −0.25 V (vs. RHE). The FE can be further improved to be 20.1 ± 0.9% at the same potential by using Ti mesh modified with oxygen vacancy-rich TiO2 nanosheets as the current collector. Utilizing the aqueous AgNDs catalyst, a Ti plate based two-electrode configured flow-type electrochemical reactor was developed to achieve an NH3 yield rate of 804.5 ± 30.6 μg h−1 mgAg−1 with a FE of 8.2 ± 0.5% at a voltage of −1.8 V. The designed non-loading electrocatalysis system takes full advantage of the AgNDs’ active sites for N2 adsorption and activation, following an alternative hydrogenation mechanism revealed by theoretical calculations.


2021 ◽  
Author(s):  
Song-Jeng Isaac Huang ◽  
Adil Muneeb ◽  
Sabhapathy Palani ◽  
Anjaiah Sheelam ◽  
Bayikadi Khasimsaheb ◽  
...  

Developing a non-precious metal electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is desirable for low-cost energy conversion devices. Herein, we designed and developed a new class...


2020 ◽  
Vol 9 (1) ◽  
pp. 843-852
Author(s):  
Hunan Jiang ◽  
Jinyang Li ◽  
Mengni Liang ◽  
Hanpeng Deng ◽  
Zuowan Zhou

AbstractAlthough Fe–N/C catalysts have received increasing attention in recent years for oxygen reduction reaction (ORR), it is still challenging to precisely control the active sites during the preparation. Herein, we report FexN@RGO catalysts with the size of 2–6 nm derived from the pyrolysis of graphene oxide and 1,1′-diacetylferrocene as C and Fe precursors under the NH3/Ar atmosphere as N source. The 1,1′-diacetylferrocene transforms to Fe3O4 at 600°C and transforms to Fe3N and Fe2N at 700°C and 800°C, respectively. The as-prepared FexN@RGO catalysts exhibited superior electrocatalytic activities in acidic and alkaline media compared with the commercial 10% Pt/C, in terms of electrochemical surface area, onset potential, half-wave potential, number of electrons transferred, kinetic current density, and exchange current density. In addition, the stability of FGN-8 also outperformed commercial 10% Pt/C after 10000 cycles, which demonstrates the as-prepared FexN@RGO as durable and active ORR catalysts in acidic media.


Author(s):  
Jinjin Shi ◽  
Xinxin Shu ◽  
Chensheng Xiang ◽  
Hong Li ◽  
Yang Li ◽  
...  

The Fe–N4–O–Fe–N4 moiety as active sites in ultra-small Fe particles anchored on carbon aerogel exhibited superior performance towards the oxygen reduction reaction.


Catalysts ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 328 ◽  
Author(s):  
Alagar Paulraj ◽  
Yohannes Kiros ◽  
Mats Göthelid ◽  
Malin Johansson

This article reports the two-step synthesis of NiFeOx nanomaterials and their characterization and bifunctional electrocatalytic activity measurements in alkaline electrolyte for metal-air batteries. The samples were mostly in layered double hydroxide at the initial temperature, but upon heat treatment, they were converted to NiFe2O4 phases. The electrochemical behaviour of the different samples was studied by linear sweep voltammetry and cyclic voltammetry on the glassy carbon electrode. The OER catalyst activity was observed for low mass loadings (0.125 mg cm−2), whereas high catalyst loading exhibited the best performance on the ORR side. The sample heat-treated at 250 °C delivered the highest bi-functional oxygen evolution and reduction reaction activity (OER/ORR) thanks to its thin-holey nanosheet-like structure with higher nickel oxidation state at 250 °C. This work further helps to develop low-cost electrocatalyst development for metal-air batteries.


Sign in / Sign up

Export Citation Format

Share Document