Ridge-furrow plastic mulching with a suitable planting density enhances rainwater productivity, grain yield and economic benefit of rainfed maize

Author(s):  
Jing Zheng ◽  
Junliang Fan ◽  
Yufeng Zou ◽  
Henry Wai Chau ◽  
Fucang Zhang
2020 ◽  
Vol 12 (2) ◽  
pp. 181-198 ◽  
Author(s):  
Jing Zheng ◽  
Junliang Fan ◽  
Yufeng Zou ◽  
Henry Wai Chau ◽  
Fucang Zhang

2005 ◽  
Vol 53 (4) ◽  
pp. 405-415 ◽  
Author(s):  
P. Janaki ◽  
T. M. Thiyagarajan

Field experiments were conducted during 1998 and 1999 in June-September with rice variety ASD18 at the wetland farm, Tamil Nadu Agricultural University, Coimbatore, India to find out theeffect of N management approaches and planting densities on N accumulation by transplanted rice in a split plot design.The main plot consisted of three plant populations (33, 66 and 100 hills m-2) and the sub-plot treatments of five N management approaches. The results revealed thatthe average N uptake in roots and aboveground biomass progressively increased with growth stages. The mean root and aboveground biomass Nuptake were 26.1 to 130.6 and 6.4 to 17.8 kg ha-1, respectively. The N uptake of grain and straw was higher in theSesbania rostratagreen manuring + 150 kg N treatment, but it was not effective in increasing the grain yield. The mean total N uptake was found to be significantly lower at 33 hills m-2(76.9 kg ha-1) and increased with an increase in planting density (100.9 and 117.2 kg ha-1at 66 and 100 hills m-2density). N application had a significant influence on N uptake and the time course of N uptake in all the SPAD-guided N approaches. A significant regression coefficient was observed between the crop N uptake and grain yield. The relationship between cumulative N uptake at the flowering stage and the grain yield was quadratic at all three densities. The N uptake rate (µN) was maximum during the active tillering to panicle initiation period and declined sharply after that. In general, µNincreased with an increase in planting density and the increase was significant up to the panicle initiation to flowering period.thereafter, the N uptake rate was similar at densities of 66 and 100 hills m-2.


2015 ◽  
Vol 41 (5) ◽  
pp. 787 ◽  
Author(s):  
Shou-Xi CHAI ◽  
Chang-Gang YANG ◽  
Shu-Fang ZHANG ◽  
Heng-Hong CHEN ◽  
Lei CHANG

Author(s):  
Guotao Yang ◽  
Xuechun Wang ◽  
Farhan Nabi ◽  
Hongni Wang ◽  
Changkun Zhao ◽  
...  

AbstractThe architecture of rice plant represents important and complex agronomic traits, such as panicles morphology, which directly influence the microclimate of rice population and consequently grain yield. To enhance yield, modification of plant architecture to create new hybrid cultivars is considered a sustainable approach. The current study includes an investigation of yield and microclimate response index under low to high plant density of two indica hybrid rice R498 (curved panicles) and R499 (erect panicles), from 2017 to 2018. The split-plot design included planting densities of 11.9–36.2 plant/m2. The results showed that compared with R498, R499 produced a higher grain yield of 8.02–8.83 t/ha at a higher planting density of 26.5–36.2 plant/m2. The response index of light intensity and relative humidity to the planting density of R499 was higher than that of R498 at the lower position of the rice population. However, the response index of temperature to the planting density of R499 was higher at the upper position (0.2–1.4%) than at the lower position. Compared with R498, R499 at a high planting density developed lower relative humidity (78–88%) and higher light intensity (9900–15,916 lx) at the lower position of the rice population. Our finding suggests that erect panicles are highly related to grain yield microclimatic contributors under a highly dense rice population, such as light intensity utilization, humidity, and temperature. The application of erect panicle rice type provides a potential strategy for yield improvement by increasing microclimatic conditions in rice.


Crop Science ◽  
2018 ◽  
Vol 58 (6) ◽  
pp. 2613-2622 ◽  
Author(s):  
Yuhong Gao ◽  
Hanyu Jiang ◽  
Bing Wu ◽  
Junyi Niu ◽  
Yajiao Li ◽  
...  

1982 ◽  
Vol 18 (1) ◽  
pp. 93-100 ◽  
Author(s):  
S. U. Remison ◽  
E. O. Lucas

SUMMARYTwo maize cvs, FARZ 23 and FARZ 25, were grown at three densities (37,000, 53,000 and 80,000 plants/ha) in 1979 and 1980. Leaf area index (LAI) increased with increase in plant population and was at a maximum at mid-silk. Grain yield was highest at 53,000 plants/ha. There was no relation between LAI and grain yield but there was a positive correlation between LAI and total dry matter yield.


2020 ◽  
pp. 1662-1669
Author(s):  
Marcus Willame Lopes Carvalho ◽  
Edson Alves Bastos ◽  
Milton José Cardoso ◽  
Aderson Soares de Andrade Junior ◽  
Carlos Antônio Ferreira de Sousa

The objectives of this study were to: (i) evaluate the effect of different spatial arrangements on morpho-physiological characteristics and (ii) determine the optimal spatial arrangement to maximize grain yield of the maize hybrid BRS-3046 grown in the Mid-North region of Brazil. We tested two row spacings (0.5 and 1 m) and five plant densities (2, 4, 6, 8, 10 plants m-2), which corresponded to 10 different plant spatial arrangements. Different morphophysiological variables, gas exchange rates and grain yield were measured. The increased planting density led to a linear increase in LAI, regardless of row spacing, while the net CO2 assimilation rate increased until the density of 4 and 6 plants m-2, under a row spacing of 0.5 and 1.0 m, respectively. On the other hand, we found a linear reduction in the stomatal conductance with increasing planting density. The intercellular CO2 concentration and the transpiration rate were higher in the widest row spacing. The instantaneous efficiency of carboxylation, in turn, showed a slight increase up to the density of six plants m-2, then falling, regardless of row spacing. Increasing plant density resulted in a linear increase in plant height and ear insertion height, regardless of row spacing. However, it had an opposite effect on stem diameter. Grain yield, in turn, increased up to 7.3 plants m-2 at a row spacing of 0.5 m and 8 plants m-2 at a row spacing of 1.0 m. This spatial arrangement was considered as ideal for achieving maximum yield


Author(s):  
Nguyễn Trung Hải ◽  
Trần Thanh Đức ◽  
Vi Thị Linh

Nghiên cứu này nhằm đánh giá tác động của các biện pháp làm đất và mật độ trồng khác nhau đến quá trình sinh trưởng, phát triển, năng suất và hiệu quả kinh tế của giống ngô lai HQ2000 trên đất cát nội đồng trong vụ Đông Xuân năm 2018-2019 tại Thừa Thiên Huế. Thí nghiệm thứ nhất gồm 3 công thức gồm làm đất truyền thống, làm đất tối thiểu và không làm đất trong đó thí nghiệm thứ hai gồm 4 công thức với mật độ gieo trồng lần lượt là 47.058, 53.333, 61.538 và 66.666 cây/ha. Kết quả thí nghiệm cho thấy: Thời gian hoàn thành các giai đoạn sinh trưởng và phát triển ở các biện pháp làm đất tối thiểu có xu hướng ngắn hơn các công thức làm đất truyền thống; chiều cao cây cuối cùng dao động từ 154 đến 175cm, số lá dao động từ 16 đến 18 lá, diện tích lá đóng bắp có xu hướng giảm ở các công thức làm đất tối thiểu trong khi các yếu tố khác như chiều cao đóng bắp, chiều dài bắp, đường kính bắp và đường kính lóng gốc ở các công thức thí nghiệm dao động tương đối ít. Năng suất lý thuyết dao động từ 61 đến 72 tạ/ha, năng suất thực thu đạt cao nhất là 59,8 tạ/ha ở công thức không làm đất. Đối với biện pháp canh tác truyền thống, năng suất đạt cao nhất ở mật độ 18,5 kg hạt giống/ha (63,4 tạ/ha). Ở các công thức thí nghiệm, lợi nhuận đạt cao nhất ở công thức không làm đất và ở mật độ trồng là 18,5 kg hạt giống/ha, tương đương 61.538 cây/ha.  ABSTRACT This study aims to evaluate the impact of different tillage methods and planting densities on the growth, development, grain yield and economic efficiency of hybrid maize HQ2000 on sandy soil in the 2018-2019 Winter-Spring season in Thua Thien Hue province. The first trial consisted of three treatments including conventional tillage, limited tillage and no tillage; the second trial consisted of four treatments with planting density of 47.058, 53.333, 61.538 và 66.666 plants/ha, respectively. Experimental results showed that: The completed time of the growth and development stages at the minimum tillage methods was shorter than conventional tillage treatments; final plant height varied from 154 to 175cm, the number of leaves ranged from 16 to 18 leaves, the leaf area at ​​corn position decreased in minimum tillage treatments while other factors such as ear height, ear length, ear diameter and stalk diameter at prop root position fluctuated slightly. Potential grain yield varied from 6.1 to 7.2 tons/ha, the highest actual grain yield was 5.98 tons/ha in the no-tillage treatment. For conventional tillage, the highest grain yield was at 18.5 kg seed/ha treatment (6.34 tons/ha). In the experimental treatments, the highest profit was achieved in the no-tillage treatment and in planting density of 18.5 kg seed/ha, equivalent 61,538 plants/ha.      


2015 ◽  
Vol 17 (2) ◽  
pp. 67-76
Author(s):  
AM Mahmud ◽  
MY Ali ◽  
KG Quddus ◽  
S Parvin

A field experiment was conducted at the Agrotechnology Field Laboratory of Khulna University during the boro season to evaluate the effect of planting density on the performance of rice variety BRRI dhan28. The experiment received twelve treatments, which were divided into two distinct patterns - single row and paired row. The single row had four treatments and paired row had eight treatments. Planting densities were 40, 27, 20 and 16 hills m-2. The experiment was arranged in a randomized complete block design (RCBD) with three replications. Standard management practices were followed in raising crops. Results revealed that closer spacing produced higher yields where 40 hills m-2 produced the most (4.81 t ha-1), which was statistically similar with that of 27 hills   m-2. Paired row planting showed better performance than single row planting. Plant height, grains panicle-1, sterile spikelets panicle-1, 1000-grain weight, grain yield were found better in paired row planting. Paired row planting at a spacing of (35 cm + 15 cm) × 10 cm  i.e row to row distance is 35 cm & 15 cm and hill to hill distance is 10 cm; found the highest grain yield (4.81 t ha-1) and the lowest yield (2.97 t ha-1) was found in single row using a spacing of 25 cm × 25 cm.Bangladesh Agron. J. 2014, 17(2): 67-76


2020 ◽  
Vol 8 (3) ◽  
pp. 63
Author(s):  
Priscila Pereira Sacramento ◽  
Letícia Cunha da Hungria ◽  
Jamil Chaar El-Husny ◽  
Luis De Souza Freitas

The aim of this study was to evaluate the influence of planting density and cultivar of soybean on yield components in the southeast Amazon. The experiment was carried out in an Oxisol, with a randomized block design in a 2 x 4 factorial scheme. The treatments were two soybean cultivars (BRS 9090 RR and BRS 8990 RR) and four planting densities (13, 15, 18 and 20 plants m-1), with three replications. First pod insertion height (IFP), plant height (H), number of pods per plant (NPP), grain yield (Y) and weight of 100 grains (W100) were evaluated. The insertion height of the first pod showed a tendency of increase with the increment of plants per linear meter for cultivar BRS 8990 RR, different of the behavior observed for the cultivar BRS 9090 RR, which only showed difference when the density of 300.000 plants ha-1 was tested. For plant height, among soybean cultivars, there was only difference in D400, with BRS 8990 RR showing a maximum height of 83.3 cm, 21% higher than BRS 9090 RR. When evaluated under D350, BRS 8990 RR showed an increase of 13% in the number of pods compared to BRS 9090 RR. Both cultivars showed linear behavior for the grain yield, increasing according the plant population, with the highest grain yield obtained under the density of 400.000 plants ha-1 (4527.3 kg ha-1). The weight of 100 grains was not influenced by any variation factor.


Sign in / Sign up

Export Citation Format

Share Document